789 research outputs found
Plasma Neuronal Exosomal Levels of Alzheimer\u27s Disease Biomarkers in Normal Aging
Plasma neuronal exosomal levels of pathogenic Alzheimer\u27s disease (AD) proteins, cellular survival factors, and lysosomal proteins distinguish AD patients from control subjects, but changes in these exosomal proteins associated with normal aging have not been described for cognitively intact subjects. Plasma neuronal exosomal levels of P-T181-tau, P-S396-tau, Aβ1-42, cathepsin D, repressor element 1-silencing transcription factor, and neurogranin were quantified longitudinally in cognitively intact older adults using two samples collected at 3- to 11-year intervals. Except for P-S396-tau, exosomal protein levels changed significantly with aging, but were largely outside the range observed in AD patients
Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases
Alzheimer’s disease (AD) is a complex, multifactorial disease in which different neuropathological mechanisms are likely involved, including those associated with pathological tau and Aβ species as well as neuroinflammation. In this context, the development of single multitargeted therapeutics directed against two or more disease mechanisms could be advantageous. Starting from a series of 1,5-diarylimidazoles with microtubule (MT)-stabilizing activity and structural similarities with known NSAIDs, we conducted structure−activity relationship studies that led to the identification of multitargeted prototypes with activities as MT-stabilizing agents and/or inhibitors of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) pathways. Several examples are brain-penetrant and exhibit balanced multitargeted in vitro activity in the low μM range. As brain-penetrant MT-stabilizing agents have proven effective against tau-mediated neurodegeneration in animal models, and because COX- and 5-LOX-derived eicosanoids are thought to contribute to Aβ plaque deposition, these 1,5-diarylimidazoles provide tools to explore novel multitargeted strategies for AD and other neurodegenerative diseases
Sites of synthesis of chromogranins A and B in the human brain
The sites of synthesis of the chromogranins A and B, and their potential processed peptides, were examined by quantitating the levels of chromogranin A and B mRNA in various regions of the human brain by Northern blot analysis. Chromogranin A and B mRNA expression in the brain is region-specific and confined to grey matter. In situ hybridization histochemistry detected chromogranin A and B mRNA in pyramidal neurons of human cerebral cortex. Cell-specific expression in subpopulations of cerebrocortical neurons suggest that chromogranin A and B gene products may play a role in central neuronal function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30124/1/0000500.pd
A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition
We have studied a family with severe mental retardation characterized by the virtual absence of speech, autism spectrum disorder, epilepsy, late-onset ataxia, weakness and dystonia. Post-mortem examination of two males revealed widespread neuronal loss, with the most striking finding being neuronal and glial tau deposition in a pattern reminiscent of corticobasal degeneration. Electron microscopic examination of isolated tau filaments demonstrated paired helical filaments and ribbon-like structures. Biochemical studies of tau demonstrated a preponderance of 4R tau isoforms. The phenotype was linked to Xq26.3, and further analysis identified an in-frame 9 base pair deletion in the solute carrier family 9, isoform A6 (SLC9A6 gene), which encodes sodium/hydrogen exchanger-6 localized to endosomal vesicles. Sodium/hydrogen exchanger-6 is thought to participate in the targeting of intracellular vesicles and may be involved in recycling synaptic vesicles. The striking tau deposition in our subjects reveals a probable interaction between sodium/proton exchangers and cytoskeletal elements involved in vesicular transport, and raises the possibility that abnormalities of vesicular targeting may play an important role in more common disorders such as Alzheimer's disease and autism spectrum disorder
An acetylation switch controls TDP-43 function and aggregation propensity
TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies
A90V TDP-43 variant results in the aberrant localization of TDP-43 in vitro
AbstractTAR DNA-binding protein-43 (TDP-43) is a highly conserved, ubiquitously expressed nuclear protein that was recently identified as the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Pathogenic TDP-43 gene (TARDBP) mutations have been identified in familial ALS kindreds, and here we report a TARDBP variant (A90V) in a FTLD/ALS patient with a family history of dementia. Significantly, A90V is located between the bipartite nuclear localization signal sequence of TDP-43 and the in vitro expression of TDP-43-A90V led to its sequestration with endogenous TDP-43 as insoluble cytoplasmic aggregates. Thus, A90V may be a genetic risk factor for FTLD/ALS because it predisposes nuclear TDP-43 to redistribute to the cytoplasm and form pathological aggregates
Recommended from our members
The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI)
Objective: Our goal was to evaluate the association of APOE with amyloid deposition, cerebrospinal fluid levels (CSF) of Aβ, tau, and p-tau, brain atrophy, cognition and cognitive complaints in E-MCI patients and cognitively healthy older adults (HC) in the ADNI-2 cohort. Methods: Two-hundred and nine E-MCI and 123 HC participants from the ADNI-2 cohort were included. We evaluated the impact of diagnostic status (E-MCI vs. HC) and APOE ε4 status (ε4 positive vs. ε4 negative) on cortical amyloid deposition (AV-45/Florbetapir SUVR PET scans), brain atrophy (structural MRI scans processed using voxel-based morphometry and Freesurfer version 5.1), CSF levels of Aβ, tau, and p-tau, and cognitive performance and complaints. Results: E-MCI participants showed significantly impaired cognition, higher levels of cognitive complaints, greater levels of tau and p-tau, and subcortical and cortical atrophy relative to HC participants (p < 0.05). Cortical amyloid deposition and CSF levels of Aβ were significantly associated with APOE ε4 status but not E-MCI diagnosis, with ε4 positive participants showing more amyloid deposition and lower levels of CSF Aβ than ε4 negative participants. Other effects of APOE ε4 status on cognition and CSF tau levels were also observed. Conclusions: APOE ε4 status is associated with amyloid accumulation and lower CSF Aβ, as well as increased CSF tau levels in early prodromal stages of AD (E-MCI) and HC. Alternatively, neurodegeneration, cognitive impairment, and increased complaints are primarily associated with a diagnosis of E-MCI. These findings underscore the importance of considering APOE genotype when evaluating biomarkers in early stages of disease
The Alzheimer's Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement
INTRODUCTION:
The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to validate biomarkers for Alzheimer's disease (AD) clinical trials. ADNI-3, which began on August 1, 2016, is a 5-year renewal of the current ADNI-2 study.
METHODS:
ADNI-3 will follow current and additional subjects with normal cognition, mild cognitive impairment, and AD using innovative technologies such as tau imaging, magnetic resonance imaging sequences for connectivity analyses, and a highly automated immunoassay platform and mass spectroscopy approach for cerebrospinal fluid biomarker analysis. A Systems Biology/pathway approach will be used to identify genetic factors for subject selection/enrichment. Amyloid positron emission tomography scanning will be standardized using the Centiloid method. The Brain Health Registry will help recruit subjects and monitor subject cognition.
RESULTS:
Multimodal analyses will provide insight into AD pathophysiology and disease progression.
DISCUSSION:
ADNI-3 will aim to inform AD treatment trials and facilitate development of AD disease-modifying treatments
- …