40 research outputs found

    DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudoexfoliation syndrome is a major risk factor for glaucoma in many populations throughout the world. Using a U.S. clinic-based case control sample with broad ethnic diversity, we show that three common SNPs in LOXL1 previously associated with pseudoexfoliation in Nordic populations are significantly associated with pseudoexfoliation syndrome and pseudoexfoliation glaucoma.</p> <p>Methods</p> <p>Three LOXL1 SNPs were genotyped in a patient sample (206 pseudoexfoliation, 331 primary open angle glaucoma, and 88 controls) from the Glaucoma Consultation Service at the Massachusetts Eye and Ear Infirmary. The SNPs were evaluation for association with pseudeoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open angle glaucoma.</p> <p>Results</p> <p>The strongest association was found for the G allele of marker rs3825942 (G153D) with a frequency of 99% in pseudoexfoliation patients (with and without glaucoma) compared with 79% in controls (p = 1.6 × 10<sup>-15</sup>; OR = 20.93, 95%CI: 8.06, 54.39). The homozygous GG genotype is also associated with pseudoexfoliation when compared to controls (p = 1.2 × 10<sup>-12</sup>; OR = 23.57, 95%CI: 7.95, 69.85). None of the SNPs were significantly associated with primary open angle glaucoma.</p> <p>Conclusion</p> <p>The pseudoexfoliation syndrome is a common cause of glaucoma. These results indicate that the G153D LOXL1 variant is significantly associated with an increased risk of pseudoexfoliation and pseudoexfoliation glaucoma in an ethnically diverse patient population from the Northeastern United States. Given the high prevalence of pseudooexfoliation in this geographic region, these results also indicate that the G153D LOXL1 variant is a significant risk factor for adult-onset glaucoma in this clinic based population.</p

    The Functional −765G→C Polymorphism of the COX-2 Gene May Reduce the Risk of Developing Crohn's Disease

    Get PDF
    Contains fulltext : 87827.pdf (publisher's version ) (Open Access)BACKGROUND: Cyclooxygenase-2 (COX-2) is a key enzyme involved in the conversion of arachidonic acid into prostaglandins. COX-2 is mainly induced at sites of inflammation in response to proinflammatory cytokines such as interleukin-1alpha/beta, interferon-gamma and tumor necrosis factor-alpha produced by inflammatory cells. AIM: The aim of this study was to investigate the possible modulating effect of the functional COX-2 polymorphisms -1195 A-->G and -765G-->C on the risk for development of inflammatory bowel disease (IBD) in a Dutch population. METHODS: Genomic DNA of 525 patients with Crohn's disease (CD), 211 patients with ulcerative colitis (UC) and 973 healthy controls was genotyped for the -1195 A-->G (rs689466) and -765G-->C (rs20417) polymorphisms. Distribution of genotypes in patients and controls were compared and genotype-phenotype interactions were investigated. RESULTS: The genotype distribution of the -1195A-->G polymorphism was not different between the patients with CD or UC and the control group. The -765GG genotype was more prevalent in CD patients compared to controls with an OR of 1.33 (95%CI 1.04-1.69, pC polymorphism was associated with a reduced risk for developing Crohn's disease in a Dutch population

    Polymorphism in COX-2 modifies the inverse association between Helicobacter pylori seropositivity and esophageal squamous cell carcinoma risk in Taiwan: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of Cyclooxygenase-2 (COX-2) was observed in many types of cancers, including esophageal squamous cell carcinoma (ESCC). One functional SNP, COX-2 -1195G/A, has been reported to mediate susceptibility of ESCC in Chinese populations. In our previous study, the presence of <it>Helicobacter pylori </it>(<it>H. pylori</it>) was found to play a protective role in development of ESCC. The interaction of COX-2 and <it>H. pylori </it>in gastric cancer was well investigated. However, literature on their interaction in ESCC risk is scarce. The purpose of this study was to evaluate the association and interaction between COX-2 single nucleotide polymorphism (SNP), <it>H. pylori </it>infection and the risk of developing ESCC.</p> <p>Methods</p> <p>One hundred and eighty patients with ESCC and 194 controls were enrolled in this study. Personal data regarding related risk factors, including alcohol consumption, smoking habits and betel quid chewing, were collected via questionnaire. Genotypes of the COX-2 -1195 polymorphism were determined by PCR-based restriction fragment length polymorphism. <it>H. pylori </it>seropositivity was defined by immunochromatographic screening test. Data was analyzed by chi-squared tests and polytomous logistics regression.</p> <p>Results</p> <p>In analysis adjusting for the covariates and confounders, <it>H. pylori </it>seropositivity was found to be inversely association with the ESCC development (adjusted OR: 0.5, 95% CI: 0.3 – 0.9). COX-2 -1195 AA homozygous was associated with an increased risk of contracting ESCC in comparison with the non-AA group, especially among patients with <it>H. pylori </it>seronegative (adjusted OR ratio: 2.9, 95% CI: 1.2 – 7.3). The effect was strengthened among patients with lower third ESCC (adjusted OR ratio: 6.9, 95% CI 2.1 – 22.5). Besides, <it>H. pylori </it>seropositivity conveyed a notably inverse effect among patients with COX-2 AA polymorphism (AOR ratio: 0.3, 95% CI: 0.1 – 0.9), and the effect was observed to be enhanced for the lower third ESCC patients (AOR ratio: 0.09, 95% CI: 0.02 – 0.47, <it>p </it>for multiplicative interaction 0.008)</p> <p>Conclusion</p> <p><it>H. pylori </it>seropositivity is inversely associated with the risk of ESCC in Taiwan, and COX-2 -1195 polymorphism plays a role in modifying the influence between <it>H. pylori </it>and ESCC, especially in lower third esophagus.</p

    Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE<sub>2 </sub>cell surface receptors (EP 1–4) to examine the mechanisms by which PGE<sub>2 </sub>regulates tumour progression.</p> <p>Methods</p> <p>Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue.</p> <p>Results</p> <p>EP4 was the most abundant subtype of PGE<sub>2 </sub>receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE<sub>2 </sub>generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 μM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE<sub>2 </sub>(1 μM). G0/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21<sup>WAF1/CIP1 </sup>expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21<sup>WAF1/CIP1 </sup>was also seen with PD153025 (1 μM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted.</p> <p>Conclusion</p> <p>COX-2 regulates cell cycle transition via EP4 receptor and altered p21<sup>WAF1/CIP1 </sup>expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative to COX-2 inhibition in the chemoprevention of CRC.</p

    Inhibitor of cyclooxygenase-2 induces cell-cycle arrest in the epithelial cancer cell line via up-regulation of cyclin dependent kinase inhibitor p21

    Get PDF
    Cyclooxygenase-2 is the rate-limiting enzyme in synthesis of prostaglandins and other eicosanoids. Prior reports have shown that inhibition of cyclooxygenase-2 activity, either by selective inhibitors or by antisense oligonucleotide, results in suppression of growth of squamous cell carcinoma cell lines which express high cyclooxygenase-2 levels, such as NA, a cell line established from a squamous cell carcinoma of the tongue. To investigate the mechanisms by which cyclooxygenase-2 inhibitors suppressed growth of these cells, the effects of NS-398, the selective cyclooxygenase-2 inhibitor, on cell-cycle distribution were examined. NS-398 induced G0/G1 cell-cycle arrest in NA cells which expressed cyclooxygenase-2. G0/G1 arrest induced by NS-398 was accompanied by up-regulation of cyclin-dependent kinase inhibitor p21, but not by up-regulation of the other cyclin-dependent kinase inhibitors. Transfection with p21 antisense oligonucleotide inhibited cell-cycle arrest induced by NS-398. Accumulation in G0/G1 was also observed in NA cells transfected with cyclooxygenase-2 antisense oligonucleotide. On the other hand, NS-398-treated NA cells showed a loss of plasma membrane asymmetry, a marker of early events in apoptosis. However, NS-398 did not induce other morphological and biochemical changes related to apoptotic cell death. These results suggest that cyclooxygenase-2 inhibitor induces G0/G1 cell-cycle arrest in NA cells by up-regulation of p21. Our results also suggest that NS-398 is not sufficient to complete the whole process of apoptosis in NA cells, although it induces an early event in apoptosis

    The effect of body weight on altered expression of nuclear receptors and cyclooxygenase-2 in human colorectal cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies on risk factors for colorectal cancer (CRC) have mainly focused on diet, and being overweight is now recognized to contribute significantly to CRC risk. Overweight and obesity are defined as an excess of adipose tissue mass and are associated with disorders in lipid metabolism. Peroxisome proliferator-activated receptors (PPARs) and retinoid-activated receptors (RARs and RXRs) are important modulators of lipid metabolism and cellular homeostasis. Alterations in expression and activity of these ligand-activated transcription factors might be involved in obesity-associated diseases, which include CRC. Cyclooxygenase-2 (COX-2) also plays a critical role in lipid metabolism and alterations in COX-2 expression have already been associated with unfavourable clinical outcomes in epithelial tumors. The objective of this study is to examine the hypothesis questioning the relationship between alterations in the expression of nuclear receptors and COX-2 and the weight status among male subjects with CRC.</p> <p>Method</p> <p>The mRNA expression of the different nuclear receptor subtypes and of COX-2 was measured in 20 resected samples of CRC and paired non-tumor tissues. The association between expression patterns and weight status defined as a body mass index (BMI) was statistically analyzed.</p> <p>Results</p> <p>No changes were observed in PPARγ mRNA expression while the expression of PPARδ, retinoid-activated receptors and COX-2 were significantly increased in cancer tissues compared to normal colon mucosa (<it>P </it>≤ 0.001). The weight status appeared to be an independent factor, although we detected an increased level of COX-2 expression in the normal mucosa from overweight patients (BMI ≥ 25) compared to subjects with healthy BMI (<it>P </it>= 0.002).</p> <p>Conclusion</p> <p>Our findings show that alterations in the pattern of nuclear receptor expression observed in CRC do not appear to be correlated with patient weight status. However, the analysis of COX-2 expression in normal colon mucosa from subjects with a high BMI suggests that COX-2 deregulation might be driven by excess weight during the colon carcinogenesis process.</p

    Prolonged Application of High Fluid Shear to Chondrocytes Recapitulates Gene Expression Profiles Associated with Osteoarthritis

    Get PDF
    BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2)) for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2) in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS) induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis/progression of OA

    Prophylactic ciprofloxacin treatment prevented high mortality, and modified systemic and intestinal immune function in tumour-bearing rats receiving dose-intensive CPT-11 chemotherapy

    Get PDF
    Infectious complications are a major cause of morbidity and mortality from dose-intensive cancer chemotherapy. In spite of the importance of intestinal bacteria translocation in these infections, information about the effect of high-dose chemotherapy on gut mucosal immunity is minimal. We studied prophylactic ciprofloxacin (Cipro) treatment on irinotecan (CPT-11) toxicity and host immunity in rats bearing Ward colon tumour. Cipro abolished chemotherapy-related mortality, which was 45% in animals that were not treated with Cipro. Although Cipro reduced body weight loss and muscle wasting, it was unable to prevent severe late-onset diarrhoea. Seven days after CPT-11, splenocytes were unable to proliferate (stimulation index=0.10±0.02) and produce proliferative and inflammatory cytokines (i.e., Interleukin (IL)-2, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α) IL-1β, IL-6) on mitogen stimulation in vitro (P<0.05 vs controls), whereas mesenteric lymph node (MLN) cells showed a hyper-proliferative response and a hyper-production of pro-inflammatory cytokines on mitogen stimulation. This suggests compartmentalised effects by CPT-11 chemotherapy on systemic and intestinal immunity. Cipro normalised the hyper-responsiveness of MLN cells, and in the spleen, it partially restored the proliferative response and normalised depressed production of IL-1β and IL-6. Taken together, Cipro prevented infectious challenges associated with immune hypo-responsiveness in systemic immune compartments, and it may also alleviate excessive pro-inflammatory responses mediating local gut injury

    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Get PDF
    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma
    corecore