25 research outputs found

    Modeling the trade-off between diet costs and methane emissions: A goal programming approach

    Get PDF
    AbstractEnteric methane emission is a major greenhouse gas from livestock production systems worldwide. Dietary manipulation may be an effective emission-reduction tool; however, the associated costs may preclude its use as a mitigation strategy. Several studies have identified dietary manipulation strategies for the mitigation of emissions, but studies examining the costs of reducing methane by manipulating diets are scarce. Furthermore, the trade-off between increase in dietary costs and reduction in methane emissions has only been determined for a limited number of production scenarios. The objective of this study was to develop an optimization framework for the joint minimization of dietary costs and methane emissions based on the identification of a set of feasible solutions for various levels of trade-off between emissions and costs. Such a set of solutions was created by the specification of a systematic grid of goal programming weights, enabling the decision maker to choose the solution that achieves the desired trade-off level. Moreover, the model enables the calculation of emission-mitigation costs imputing a trading value for methane emissions. Emission imputed costs can be used in emission-unit trading schemes, such as cap-and-trade policy designs. An application of the model using data from lactating cows from dairies in the California Central Valley is presented to illustrate the use of model-generated results in the identification of optimal diets when reducing emissions. The optimization framework is flexible and can be adapted to jointly minimize diet costs and other potential environmental impacts (e.g., nitrogen excretion). It is also flexible so that dietary costs, feed nutrient composition, and animal nutrient requirements can be altered to accommodate various production systems

    Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options

    Get PDF
    The goal of this review was to analyze published data related to mitigation of enteric methane (CH4) emissions from ruminant animals to document the most effective and sustainable strategies. Increasing forage digestibility and digestible forage intake was one of the major recommended CH4 mitigation practices. Although responses vary, CH4 emissions can be reduced when corn silage replaces grass silage in the diet. Feeding legume silages could also lower CH4 emissions compared to grass silage due to their lower fiber concentration. Dietary lipids can be effective in reducing CH4 emissions, but their applicability will depend on effects on feed intake, fiber digestibility, production, and milk composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease CH4 emission intensity (Ei; CH4 per unit animal product), particularly when inclusion is above 40% of dietary dry matter and rumen function is not impaired. Supplementation of diets containing medium to poor quality forages with small amounts of concentrate feed will typically decrease CH4 Ei. Nitrates show promise as CH4 mitigation agents, but more studies are needed to fully understand their impact on whole-farm greenhouse gas emissions, animal productivity, and animal health. Through their effect on feed efficiency and rumen stoichiometry, ionophores are likely to have a moderate CH4 mitigating effect in ruminants fed high-grain or mixed grain–forage diets. Tannins may also reduce CH4 emissions although in some situations intake and milk production may be compromised. Some direct-fed microbials, such as yeast-based products, might have a moderate CH4–mitigating effect through increasing animal productivity and feed efficiency, but the effect is likely to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future although the extent of CH4 reduction is likely to be small and adaptation by ruminal microbes and persistence of the effect is unknown. Overall, improving forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH4 Ei. Several feed supplements have a potential to reduce CH4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible

    Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO

    Full text link
    Gamma-ray bursts are believed to originate in core-collapse of massive stars. This produces an active nucleus containing a rapidly rotating Kerr black hole surrounded by a uniformly magnetized torus represented by two counter-oriented current rings. We quantify black hole spin-interactions with the torus and charged particles along open magnetic flux-tubes subtended by the event horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii) aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al. 2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating LIGO/Virgo detectors enables searches for nearby events and their spectral closure density 6e-9 around 250Hz in the stochastic background radiation in gravitational waves. At current sensitivity, LIGO-Hanford may place an upper bound around 150MSolar in GRB030329. Detection of Egw thus provides a method for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49

    INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species

    Get PDF
    In a world where invasive alien species (IAS) are recognised as one of the major threats to biodiversity, leading scientists from five continents have come together to propose the concept of developing an international association for open knowledge and open data on IAS—termed “INVASIVESNET”. This new association will facilitate greater understanding and improved management of invasive alien species (IAS) and biological invasions globally, by developing a sustainable network of networks for effective knowledge exchange. In addition to their inclusion in the CBD Strategic Plan for Biodiversity, the increasing ecological, social, cultural and economic impacts associated with IAS have driven the development of multiple legal instruments and policies. This increases the need for greater co-ordination, co-operation, and information exchange among scientists, management, the community of practice and the public. INVASIVESNET will be formed by linking new and existing networks of interested stakeholders including international and national expert working groups and initiatives, individual scientists, database managers, thematic open access journals, environmental agencies, practitioners, managers, industry, non-government organisations, citizens and educational bodies. The association will develop technical tools and cyberinfrastructure for the collection, management and dissemination of data and information on IAS; create an effective communication platform for global stakeholders; and promote coordination and collaboration through international meetings, workshops, education, training and outreach. To date, the sustainability of many strategic national and international initiatives on IAS have unfortunately been hampered by time-limited grants or funding cycles. Recognising that IAS initiatives need to be globally coordinated and ongoing, we aim to develop a sustainable knowledge sharing association to connect the outputs of IAS research and to inform the consequential management and societal challenges arising from IAS introductions. INVASIVESNET will provide a dynamic and enduring network of networks to ensure the continuity of connections among the IAS community of practice, science and management

    Cow of the Future: The Enteric Methane Reduction Project Supporting the U.S. Dairy Industry Sustainability Commitment

    Full text link
    This information was presented at the 2012 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science in the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://www.ansci.cornell.edu/dm/proceedings_orders.html or by calling (607)255-4285

    Fermentation of wheat: effects of backslopping different proportions of pre-fermented wheat on the microbial and chemical composition

    No full text
    The objective of the study was to examine effect of backslop on the chemical and microbiological characteristics of fermented wheat (FW). Coarsely ground wheat was mixed with water (1:3 wt/wt) and inoculated with 6 log cfu ml(-1) each of an overnight culture of Lactobacillus plantarum and Pediococcus pentosaceus. Four fermentation treatments were conducted in 45 1, closed, PVC containers over 48 hours. Three treatments investigated the benefits of the addition of previously fermented wheat (backslopping, BSL) at different proportions (0.20, 0.33 or 0.42 kg) to freshly prepared wheat. The control treatment contained no addition of BSL. Elimination of coliforms from the FW within 48 h was only achieved through backslopping; where coliform bacteria counts decreased from approximately 6.5 log10 cfu ml(-1) to less than 3 log10 cfu ml(-1). There was no apparent advantage in increasing the backslop proportion above 0.20. However, the exclusion of coliform bacteria required the pH to remain below 4.0 for at a minimum of 24 h. The results of these studies indicate that fermentation of wheat has the potential to reduce the risk of feed-borne colibacillosis and provides a practical alternative to producers that cannot ferment multiple diets or have limited fermentation capacity

    Soybean meal substitution with a yeast-derived microbial protein sourse in dairy cow diets.

    No full text
    The objective of this study was to examine the effects substituting soybean meal with a yeast-derived microbial protein (YMP) on rumen and blood metabolites, dry matter intake, and milk production of high-producing dairy cows. Sixteen Holstein cows (12 multiparous and 4 primiparous), 93 ± 37 DIM (mean ± SD) at the beginning of the experiment, were used in a 4 × 4 Latin square design with four 28-d periods. Cows were blocked by parity and production, with 1 square consisting of 4 animals fitted with rumen cannulas. Basal diets, formulated for 16.1% crude protein and 1.56 Mcal/kg of net energy for lactation, contained 40% corn silage, 20% alfalfa hay, and 40% concentrate mix. During each period, cows were fed 1 of 4 treatment diets corresponding to YMP (DEMP; Alltech Inc., Nicholasville, KY) concentrations of 0, 1.14, 2.28, and 3.41% DM. Soybean meal (44% CP) was replaced by YMP to attain isonitrogenous and isoenergetic diets. Dietary treatments had no effect on pH and on most ruminal volatile fatty acid concentrations, with the exception of isovalerate, which decreased linearly with the addition of YMP. Rumen ammonia concentration decreased linearly, whereas free amino acids, total amino acid nitrogen, and soluble proteins weighing more than 10 kDa showed a cubic response on rumen N fractionation. A quadratic response was observed in oligopeptides that weighed between 3 and 10 kDa and peptides under 3 kDa when expressed as percentages of total amino acids and total nitrogen. Although nonesterified fatty acid concentration in blood did not differ between treatments, ÎČ-hydroxybutyrate and plasma glucose increased linearly as YMP increased. Dry matter intake showed a cubic effect, where cows fed 1.14, and 3.41% YMP had the highest intake. Milk production was not affected by YMP, whereas a trend was observed for a quadratic increase for 4% fat-corrected milk and energy-corrected milk. Medium- and long-chain fatty acid concentrations in milk increased quadratically, which elicited similar effects on milk fat concentration and yield. Total solids percentage and yield, and milk urea nitrogen also showed quadratic effects as YMP increased in the diet. No effects were observed on feed efficiency, milk protein, and lactose percentage or yield. A complementary in vitro study demonstrated a quadratic tendency for apparent and true dry matter digestibility as YMP was added to the diet. It was concluded that the substitution of soybean meal with YMP increased the percentage of total solids in milk and tended to improve energy-corrected and fat-corrected milk production in high-producing dairy cows consuming high-forage diets

    Symposium review : Development of a funding program to support research on enteric methane mitigation from ruminants

    No full text
    Enteric methane is a major source of greenhouse gas emissions from milk production systems. Two organizations based in the United States, the Foundation for Food and Agriculture Research and the Dairy Research Institute, have developed a collaborative program to align resources and fund projects to identify, develop, and validate new and existing mitigation options for enteric methane emissions from dairy and beef cattle. This collaborative program is called the Greener Cattle Initiative. The program will develop requests for proposals and award grants on projects that address challenges within, but not limited, to the following research areas: dairy and beef cattle nutrition, rumen microbiome, dairy and beef cattle genetics, sensing and data technology for enteric methane measurement and prediction, and socioeconomic analysis of enteric methane mitigation practices. The program is structured as a consortium with closed participation and a flat governance collaboration model. The Greener Cattle Initiative program will continue incorporating participants from the food and agriculture industry, commodity groups, and nonprofit organizations who share common objectives and contribute in-kind and matching funds to the program, up to a total of 10 organizations. Research findings will be communicated broadly, after a waiting period for exclusive access to program participants, to create shared knowledge on enteric methane mitigation. The Greener Cattle Initiative is expected to award up to $5 million in research grant funding in a 5-year period, which will contribute to advancing the voluntary greenhouse gas reduction goals established by both the United States and global dairy sectors
    corecore