631 research outputs found

    Flow Cytometric Analysis of Hematopoietic Populations in Rat Bone Marrow. Impact of Trauma and Hemorrhagic Shock

    Get PDF
    Severe injury and hemorrhagic shock (HS) result in multiple changes to hematopoietic differentiation, which contribute to the development of immunosuppression and multiple organ failure (MOF). Understanding the changes that take place during the acute injury phase may help predict which patients will develop MOF and provide potential targets for therapy. Obtaining bone marrow from humans during the acute injury phase is difficult so published data is largely derived from peripheral blood samples, which infer bone marrow changes that reflect the sustained inflammatory response. This preliminary and opportunistic study investigated leucopoietic changes in rat bone marrow 6 hours following traumatic injury and HS. Terminally anesthetized male Porton Wistar rats were allocated randomly to receive a sham operation (cannulation with no injury) or femoral fracture and HS. Bone marrow cells were flushed from rat femurs and immunophenotypically stained with specific antibody panels for lymphoid (CD45R, CD127, CD90, IgM) or myeloid (CD11b, CD45, RP-1) lineages. Subsequently, cell populations were fluorescence activated cell sorted for morphological assessment. Stage-specific cell populations were identified using a limited number of antibodies and leucopoietic changes were determined 6 hours following trauma and HS. Myeloid sub-populations could be identified by varying levels CD11b expression, CD45 and RP-1. Trauma and HS resulted in a significant reduction in total CD11b+ myeloid cells including both immature (RP-1(-)) and mature (RP-1+) granulocytes. Multiple B-cell lymphoid subsets were identified. The total % of CD90+ subsets remained unchanged following trauma and HS, but there was a reduction in the numbers of maturing CD90(-) cells suggesting movement into the periphery

    Composition of dissolved organic matter within a lacustrine environment

    Get PDF
    Freshwater dissolved organic matter (DOM) is a complex mixture of chemical components that are central to many environmental processes, including carbon and nitrogen cycling. However, questions remain as to its chemical characteristics, sources and transformation mechanisms. Here, we employ 1- and 2-D nuclear magnetic resonance (NMR) spectroscopy to investigate the structural components of lacustrine DOM from Ireland, and how it varies within a lake system, as well as to assess potential sources. Major components found, such as carboxyl-rich alicyclic molecules (CRAM) are consistent with those recently identified in marine and freshwater DOM. Lignin-type markers and protein/peptides were identified and vary spatially. Phenylalanine was detected in lake areas influenced by agriculture, whereas it is not detectable where zebra mussels are prominent. The presence of peptidoglycan, lipoproteins, large polymeric carbo- hydrates and proteinaceous material supports the substantial contribution of material derived from microorganisms. Evidence is provided that peptidoglycan and silicate species may in part originate from soil microbes

    The Yeast Resource Center Public Image Repository: A large database of fluorescence microscopy images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in the development of computational methods to analyze fluorescent microscopy images and enable automated large-scale analysis of the subcellular localization of proteins. Determining the subcellular localization is an integral part of identifying a protein's function, and the application of bioinformatics to this problem provides a valuable tool for the annotation of proteomes. Training and validating algorithms used in image analysis research typically rely on large sets of image data, and would benefit from a large, well-annotated and highly-available database of images and associated metadata.</p> <p>Description</p> <p>The Yeast Resource Center Public Image Repository (YRC PIR) is a large database of images depicting the subcellular localization and colocalization of proteins. Designed especially for computational biologists who need large numbers of images, the YRC PIR contains 532,182 TIFF images from nearly 85,000 separate experiments and their associated experimental data. All images and associated data are searchable, and the results browsable, through an intuitive web interface. Search results, experiments, individual images or the entire dataset may be downloaded as standards-compliant OME-TIFF data.</p> <p>Conclusions</p> <p>The YRC PIR is a powerful resource for researchers to find, view, and download many images and associated metadata depicting the subcellular localization and colocalization of proteins, or classes of proteins, in a standards-compliant format. The YRC PIR is freely available at <url>http://images.yeastrc.org/</url>.</p

    Direct Observation of Strand Passage by DNA-Topoisomerase and Its Limited Processivity

    Get PDF
    Type-II DNA topoisomerases resolve DNA entanglements such as supercoils, knots and catenanes by passing one segment of DNA duplex through a transient enzyme-bridged double-stranded break in another segment. The ATP-dependent passage reaction has previously been demonstrated at the single-molecule level, showing apparent processivity at saturating ATP. Here we directly observed the strand passage by human topoisomerase IIα, after winding a pair of fluorescently stained DNA molecules with optical tweezers for 30 turns into an X-shaped braid. On average 0.51±0.33 µm (11±6 turns) of a braid was unlinked in a burst of reactions taking 8±4 s, the unlinked length being essentially independent of the enzyme concentration between 0.25–37 pM. The time elapsed before the start of processive unlinking decreased with the enzyme concentration, being ∼100 s at 3.7 pM. These results are consistent with a scenario where the enzyme binds to one DNA for a period of ∼10 s, waiting for multiple diffusional encounters with the other DNA to transport it across the break ∼10 times, and then dissociates from the binding site without waiting for the exhaustion of transportable DNA segments

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial

    Get PDF
    Low-carbohydrate (LC) and high-fat, low-carbohydrate (HFLC) dietary preparations may enhance 18F-FDG-PET-based imaging of small, inflamed structures near the heart by suppressing myocardial FDG signal. We compared myocardial 18F-FDG uptake in patients randomized to LC, HFLC, and unrestricted (UR) preparations prior to 18F-FDG-PET. We randomized 63 outpatients referred for oncologic 18F-FDG-PET to LC, HFLC, or UR dietary preparations (1:1:1 allocation) starting the evening before PET. After eating dinner according to instructions, UR and LC patients fasted until FDG injection (mean time 745 minutes for UR, 899 minutes for LC), and HFLC patients drank a fatty drink 60-70 minutes prior to FDG injection. Attenuation-corrected PET imaging was performed 60 minutes after FDG administration. Maximal myocardial standard uptake values (MyoSUVmax) were systematically measured in axial view and compared between the three groups. Using UR patients as reference, mean MyoSUVmax was lower in LC patients (3.3 ± 2.7 vs 6.2 ± 5.2, P = .03) but not in HFLC patients (5.5 ± 4.2, P = .63). Ratios of MyoSUVmax to liver SUVmax, calculated to control for background uptake, were not significantly different amongst the groups (1.9 ± 2.1 LC, 2.6 ± 2.3 HFLC, 3.6 ± 3.5 UR). In this small randomized controlled trial using UR diet as reference, LC dietary preparation followed by extended fasting resulted in significant myocardial uptake suppression

    Smoking, Green Tea Consumption, Genetic Polymorphisms in the Insulin-Like Growth Factors and Lung Cancer Risk

    Get PDF
    Insulin-like growth factors (IGFs) are mediators of growth hormones; they have an influence on cell proliferation and differentiation. In addition, IGF-binding protein (IGFBP)-3 could suppress the mitogenic action of IGFs. Interestingly, tea polyphenols could substantially reduce IGF1 and increase IGFBP3. In this study, we evaluated the effects of smoking, green tea consumption, as well as IGF1, IGF2, and IGFBP3 polymorphisms, on lung cancer risk. Questionnaires were administered to obtain the subjects' characteristics, including smoking habits and green tea consumption from 170 primary lung cancer cases and 340 healthy controls. Genotypes for IGF1, IGF2, and IGFBP3 were identified by polymerase chain reaction. Lung cancer cases had a higher proportion of smoking, green tea consumption of less than one cup per day, exposure to cooking fumes, and family history of lung cancer than controls. After adjusting the confounding effect, an elevated risk was observed in smokers who never drank green tea, as compared to smokers who drank green tea more than one cup per day (odds ratio (OR) = 13.16, 95% confidence interval (CI) = 2.96–58.51). Interaction between smoking and green tea consumption on lung cancer risk was also observed. Among green tea drinkers who drank more than one cup per day, IGF1 (CA)19/(CA)19 and (CA)19/X genotypes carriers had a significantly reduced risk of lung cancer (OR = 0.06, 95% CI = 0.01–0.44) compared with IGF1 X/X carriers. Smoking-induced pulmonary carcinogenesis could be modulated by green tea consumption and their growth factor environment
    corecore