132 research outputs found

    Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of <it>Salmonella </it>Enteritidis subjected to this stress.</p> <p>Results</p> <p>In this study, we used 2 D gel electrophoresis to examine the proteomes of PA adapted and unadapted <it>S</it>. Enteritidis and have identified five proteins that are upregulated in PA adapted cultures using standard peptide mass fingerprinting by MALDI-TOF-MS and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of these five, two significant stress-related proteins (Dps and CpxR) were shown (via qRT-PCR analysis) to be upregulated at the transcriptional level as well. Unlike the wild type when adapted to PA (which demonstrates significant acid resistance), PA adapted <it>S</it>. Enteritidis ∆<it>dps </it>and <it>S</it>. Enteritidis ∆<it>cpxR </it>were at a clear disadvantage when challenged to a highly acidic environment. However, we found the acid resistance to be fully restorable after genetic complementation.</p> <p>Conclusions</p> <p>This work reveals a significant difference in the proteomes of PA adapted and unadapted <it>S</it>. Enteritidis and affirms the contribution of Dps and CpxR in PA induced acid resistance.</p

    Coherent excitation transferring via dark state in light-harvesting process

    Full text link
    We study the light absorption and energy transferring in a donor-acceptor system with a bionic structure. In the optimal case with uniform couplings, it is found that the quantum dynamics of this seemingly complicated system is reduced as a three-level system of Λ\Lambda-type. With this observation, we show that the dark state based electromagnetically-induced transparency (EIT) effect could enhance the energy transfer efficiency, through a quantum interference effect suppressing the excited population of the donors. We estimate the optimal parameters of the system to achieve the maximum output power. The splitting behavior of maximum power may be used to explain the phenomenon that the photosynthesis systems mainly absorb two colors of light.Comment: 4 pages, 3 figure

    Mapping Brain Response to Pain in Fibromyalgia Patients Using Temporal Analysis of fMRI

    Get PDF
    Background: Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. Methodology/Principal Findings: Twenty-seven women (mean age: 47.8 years) were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds) consistently exceeded the stimulus application (9 seconds) in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia) to 4 kg/cm2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm2), control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. Conclusions/Significance: The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions

    Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation

    Get PDF
    BACKGROUND: Theophylline has been used widely as a bronchodilator for the treatment of bronchial asthma and has been suggested to modulate immune response. While the importance of macrophages in asthma has been reappraised and emphasized, their significance has not been well investigated. We conducted a genome-wide profiling of the gene expressions of macrophages in response to theophylline. METHODS: Microarray technology was used to profile the gene expression patterns of macrophages modulated by theophylline. Northern blot and real-time quantitative RT-PCR were also used to validate the microarray data, while Western blot and ELISA were used to measure the levels of IL-13 and LTC4. RESULTS: We identified dozens of genes in macrophages that were dose-dependently down- or up-regulated by theophylline. These included genes related to inflammation, cytokines, signaling transduction, cell adhesion and motility, cell cycle regulators, and metabolism. We observed that IL-13, a central mediator of airway inflammation, was dramatically suppressed by theophylline. Real-time quantitative RT-PCR and ELISA analyses also confirmed these results, without respect to PMA-treated THP-1 cells or isolated human alveolar macrophages. Theophylline, rolipram, etazolate, db-cAMP and forskolin suppressed both IL-13 mRNA expression (~25%, 2.73%, 8.12%, 5.28%, and 18.41%, respectively) and protein secretion (<10% production) in macrophages. These agents also effectively suppressed LTC4 expression. CONCLUSION: Our results suggest that the suppression of IL-13 by theophylline may be through cAMP mediation and may decrease LTC4 production. This study supports the role of theophylline as a signal regulator of inflammation, and that down regulation of IL-13 by theophylline may have beneficial effects in inflammatory airway diseases

    Specifically Progressive Deficits of Brain Functional Marker in Amnestic Type Mild Cognitive Impairment

    Get PDF
    Background: Deficits of the default mode network (DMN) have been demonstrated in subjects with amnestic type mild cognitive impairment (aMCI) who have a high risk of developing Alzheimer’s disease (AD). However, no longitudinal study of this network has been reported in aMCI. Identifying links between development of DMN and aMCI progression would be of considerable value in understanding brain changes underpinning aMCI and determining risk of conversion to AD. Methodology/Principal Findings: Resting-state fMRI was acquired in aMCI subjects (n = 26) and controls (n = 18) at baseline and after approximately 20 months follow up. Independent component analysis was used to isolate the DMN in each participant. Differences in DMN between aMCI and controls were examined at baseline, and subsequent changes between baseline and follow-up were also assessed in the groups. Posterior cingulate cortex/precuneus (PCC/PCu) hyper-functional connectivity was observed at baseline in aMCI subjects, while a substantial decrement of these connections was evident at follow-up in aMCI subjects, compared to matched controls. Specifically, PCC/PCu dysfunction was positively related to the impairments of episodic memory from baseline to follow up in aMCI group. Conclusions/Significance: The patterns of longitudinal deficits of DMN may assist investigators to identify and monitor the development of aMCI

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    Beyond the Global Brain Differences: Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers

    Full text link
    Background: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure. Methods: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference. Results: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness. Conclusions: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment

    Ovarian cancer

    Get PDF
    Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies

    Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis

    Get PDF
    Data Availability Statement: The raw data supporting the conclusions of this article and code used for analysis will be made available by the authors on reasonable request pending appropriate study approvals and data transfer agreements between participating institutions.Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/brainsci14070669/s1, Table S1: Inclusion/exclusion criteria for each data source; Table S2: Deficit in words recalled for each clinical condition relative to matched controls. Refs. [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] are cited in the Supplementary Materials.Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15–90. The effects of dementia, mild cognitive impairment, Parkinson’s disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders.This research was funded by the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military Relevant Brain Injury Consortium (LIMBIC), Grant/Award Numbers: W81XWH18PH, TBIRPLIMBIC under Awards Numbers: W81XWH1920067 and W81XWH1320095; US Department of Defense, Grant/Award Number: AZ150145; US Department of Veterans Affairs, Grant/Award Numbers: I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX001135, I01 RX002076, I01 RX001880, I01 RX002172, I01 RX002173, I01 RX002171, I01 RX002174, I01 RX002170, 1I01 RX003444; National Institutes of Health (NIH), Grant/Award Number(s): RF1NS115268, RF1NS128961, U01NS086625, U01MH124639, P50MH115846, R01MH113827, R25MH080663, K08MH068540, R01NS100973, R01EB006841, P20GM103472, RO1MH083553, T32MH019535, R01 HD061504, RO1MH083553, R01AG050595, R01AG076838, R01AG060470, R01AG064955, P01AG055367, K23MH095661, R01MH094524, R01MH121246, T32MH019535, R01NS124585, R01NS122827, R61NS120249, R01NS122184, U54EB020403, R01MH116147, R56AG058854, P41EB015922, R01MH111671, P41RR14075, M01RR01066, R01EB006841, R01EB005846, R01 EB000840, RC1MH089257, U24 RR021992, and NCRR 5 month-RR001066 (MGH General Clinical Research Center); National Institute of Mental Health (NIMH), Grant/Award Number: 1P20RR021938; Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III, Grant/Award Numbers: PI15-00852, PI18-00945, JR19-00024, PI17-00481, PI20-00721; Sara Borrell contract, Grant/Award Number: CD19-00149; German Research Foundation DFG grant FOR2107, Grant/Award Numbers: JA 1890/7-1, JA 1890/7-2, NE2254/1-2, NE2254/2-1, NE2254/3-1, NE2254/4-1, KI588/14-1, KI588/14-2, DA1151/5-1, DA1151/5-2, SFB-TRR58, Projects C09 and Z02; European Union, NextGenerationEU, Grant/Award Numbers: PMP21/00051, PI19/01024; Structural Funds; Seventh Framework Program; H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2, Grant/Award Number: 101034377; Project AIMS-2-TRIALS, Grant/Award Number: 777394; Horizon Europe; NSF, Grant/Award Number: 2112455; Madrid Regional Government, Grant/Award Number: B2017/BMD-3740 AGES-CM-2; Dalhousie Medical Research Foundation; Research Nova Scotia, Grant/Award Number: RNS-NHIG-2021-1931; NJ Commission on TBI Research Grants, Grant/Award Numbers: CBIR11PJT020, CBIR13IRG026; Department of Psychology, University of Oslo; Sunnaas Rehabilitation Hospital, Grant/Award Number: HF F32NS119285; Canadian Institutes of Health Research, Grant/Award Number: 166098; Neurological Foundation of New Zealand, Grant/Award Number: 2232 PRG; Canterbury Medical Research Foundation, University of Otago; Biogen US Investigator-initiated grant; Italian Ministry of Health, Grant/Award Number: RF-2019-12370182 and Ricerca Corrente RC 23; National Institute on Aging; National Health and Medical Research Council, Investigator Grant/Award Number: APP1176426; PA Health Research, Grant/Award Number: 4100077082; La Caixa Foundation, Grant/Award Number: 100010434, fellowship code: LCF/BQ/PR22/11920017; Research Council of Norway, Grant/Award Number: 248238; Health Research Council of New Zealand Sir Charles Hercus Early Career Development, Grant/Award Numbers: 17/039 and 14-440; Health Research Council of New Zealand, Grant/Award Numbers: 20/538 and 14/440; Research and Education Trust Pacific Radiology, Grant/Award Number: MRIJDA; South-Eastern Norway Regional Health Authority, Grant/Award Number: 2018076; Norwegian ExtraFoundation for Health and Rehabilitation, Grant/Award Numbers: 2015/FO5146; South-Eastern Norway Regional Health Authority, Grant/Award Number: 2015044; Stiftelsen K.G. Jebsen, Grant/Award Number: SKGJ MED-02; The Liaison Committee between Central Norway Regional Health Authority (RHA) and the Norwegian University of Science and Technology (NTNU), Grant/Award Number: 2020/39645; National Health and Medical Research Council, Grant/Award Number: APP1020526; Brain Foundation; Wicking Trust; Collie Trust; Sidney and Fiona Myer Family Foundation; U.S. Army Medical Research and Materiel Command (USAMRMC), Grant/Award Number: 13129004; Department of Energy, Grant/Award Number: DE-FG02-99ER62764; Mind Research Network; National Association for Research in Schizophrenia and Affective Disorders, Young Investigator Award; Blowitz Ridgeway and Essel Foundations; Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster; NOW ZonMw TOP, Grant/Award Number: 91211021; UCLA Easton Clinic for Brain Health; UCLA Brain Injury Research Center; Stan and Patty Silver; Clinical and Translational Research Center, Grant/Award Numbers: UL1RR033176, UL1TR000124; Mount Sinai Institute for NeuroAIDS Disparities; VA Rehab SPIRE; CDMRP PRAP; VA RR&D, Grant/Award Number: IK2RX002922; Veski Fellowship; Femino Foundation grant; Fundación Familia Alonso; Fundación Alicia Koplowitz; CIBERSAM, Madrid Regional Government, Grant/Award Numbers: B2017/BMD-3740 AGES-CM-2, 2019R1C1C1002457, 21-BR-03-01, 2020M3E5D9079910, 21-BR-03-01; Deutsche Forschungsgemeinschaft (DFG), Grant/Award Numbers: NE2254/1-2, NE2254/2-1, NE2254/3-1, NE2254/4-1
    corecore