2,362 research outputs found
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
Recommended from our members
The programming of sequences of saccades
Saccadic eye movements move the high-resolution fovea to point at regions of interest. Saccades can only be generated serially (i.e., one at a time). However, what remains unclear is the extent to which saccades are programmed in parallel (i.e., a series of such moments can be planned together) and how far ahead such planning occurs. In the current experiment, we investigate this issue with a saccade contingent preview paradigm. Participants were asked to execute saccadic eye movements in response to seven small circles presented on a screen. The extent to which participants were given prior information about target locations was varied on a trial-by-trial basis: participants were aware of the location of the next target only, the next three, five, or all seven targets. The addition of new targets to the display was made during the saccade to the next target in the sequence. The overall time taken to complete the sequence was decreased as more targets were available up to all seven targets. This was a result of a reduction in the number of saccades being executed and a reduction in their saccade latencies. Surprisingly, these results suggest that, when faced with a demand to saccade to a large number of target locations, saccade preparation about all target locations is carried out in paralle
Giant phonon anomalies and central peak due to charge density wave formation in YBaCuO
The electron-phonon interaction is a major factor influencing the competition
between collective instabilities in correlated-electron materials, but its role
in driving high-temperature superconductivity in the cuprates remains poorly
understood. We have used high-resolution inelastic x-ray scattering to monitor
low-energy phonons in YBaCuO (superconducting
K), which is close to a charge density wave (CDW) instability. Phonons in a
narrow range of momentum space around the CDW ordering vector exhibit extremely
large superconductivity-induced lineshape renormalizations. These results imply
that the electron-phonon interaction has sufficient strength to generate
various anomalies in electronic spectra, but does not contribute significantly
to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW
nanodomains is observed in a wide temperature range above and below ,
suggesting that the gradual onset of a spatially inhomogeneous CDW domain state
with decreasing temperature is a generic feature of the underdoped cuprates
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses
Many contemporary studies have shown that astrocytes play a significant role
in modulating both short and long form of synaptic plasticity. There are very
few experimental models which elucidate the role of astrocyte over Long-term
Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of
astrocytes in induction of LTP at single hippocampal synapses. They suggested a
purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA)
Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic
induction were not investigated. Here, in this article, we propose a
mathematical model for astrocyte modulated LTP which successfully emulates the
experimental findings of Perea & Araque (2007). Our study suggests the role of
retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically
modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to
appear
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Ordering theories: typologies and conceptual frameworks for sociotechnical change
What theories or concepts are most useful at explaining socio technical change? How can – or cannot – these be integrated? To provide an answer, this study presents the results from 35 semi-structured research interviews with social science experts who also shared more than two hundred articles, reports and books on the topic of the acceptance, adoption, use, or diffusion of technology. This material led to the identification of 96 theories and conceptual approaches spanning 22 identified disciplines. The article begins by explaining its research terms and methods before honing in on a combination of fourteen theories deemed most relevant and useful by the material. These are: Sociotechnical Transitions, Social Practice Theory, Discourse Theory, Domestication Theory, Large Technical Systems, Social Construction of Technology, Sociotechnical Imaginaries, Actor-Network Theory, Social Justice Theory, Sociology of Expectations, Sustainable Development, Values Beliefs Norms Theory, Lifestyle Theory, and the Unified Theory of Acceptance and Use of Technology. It then positions these theories in terms of two distinct typologies. Theories can be placed into five general categories of being centered on agency, structure, meaning, relations or norms. They can also be classified based on their assumptions and goals rooted in functionalism, interpretivism, humanism or conflict. The article lays out tips for research methodology before concluding with insights about technology itself, analytical processes associated with technology, and the framing and communication of results. An interdisciplinary theoretical and conceptual inventory has much to offer students, analysts and scholars wanting to study technological change and society
- …
