210 research outputs found

    Investigations on the effect of wall thickness on magnetic adhesion for wall climbing robots

    Get PDF
    The focus of this work is to investigate the adhesion characteristics of a permanent magnet arrangement over ferromagnetic surfaces for wall climbing robot applications. The changes in wall thickness affect the adhesion characteristics of the robot, this in turn influences the payload and alters the operating conditions. The effect of varying the wall thickness on the adhesion strength of a wall-climbing robot is an area barely investigated and this is being explored in this work. A two-dimensional model of the adhesion mechanism and the ferromagnetic surface is developed and simulated in this study. The adhesion characteristics are studied for different thicknesses of the ferromagnetic surface with different grades of the magnet. Two different standoff distances which comprise the gap between the magnet and the surface to be inspected are investigated therein. Experimental studies are also carried out to measure the performance, and the results show a strong correlation with the simulation results. Simulation with experimental validation of magnetic adhesion presented will provide better insights into magnetic wall climbing systems

    Surveillance of Schistosoma japonicum Infection in Domestic Ruminants in the Dongting Lake Region, Hunan Province, China

    Get PDF
    Background: Schistosomiasis japonica is prevalent in Asian countries and it remains a major public health problem in China. The major endemic foci are the marsh and lake regions of southern China, particularly the Dongting Lake region bordering Hunan and Hubei provinces, and the Poyang Lake region in Jiangxi province. Domestic ruminants, especially bovines, have long been considered to play a major role in the transmission of Schistosoma japonicum to humans. Methods and Findings: A miracidial hatching technique was used to investigate the prevalence of S. japonicum infections in domestic ruminants and field feces collected from two towns located to the south and east of Dongting Lake, Hunan province, between 2005 and 2010. The overall prevalence of infection was not significantly reduced from 4.93 % in 2005 to 3.64 % in 2008, after which it was maintained at this level. Bovines comprised 23.5–58.2 % of the total infected ruminants, while goats comprised 41.8–76.5%. Infection rates in cattle and goats were significantly higher than those found in buffalo in most study years. The prevalence in buffalo younger than three years was significantly higher than that in those aged over three years. All the positive field samples of feces were derived from bovines in Nandashan. In Matang Town, 61.22 % of the positive field feces were from bovines, while the rest were from goats. The positive rates for field feces were approximately the same in April and November/October. Conclusions: The present study found that bovines and goats are major sources of S. japonicum infection in the Dongtin

    A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM); and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG) are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7) act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms.</p> <p>Methods</p> <p>We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ). Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP) were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637.</p> <p>Results</p> <p>The frequency of the rs6754031 polymorphism was significantly different in both groups (<it>P </it>= 0.036) mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88) than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; <it>P </it>= 0.002) and the TT genotype (median = 71; percentile 25/75 = 64/77; <it>P </it>= 0.001).</p> <p>Conclusion</p> <p>In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that some patients with severe FM may have a dorsal root ganglia sodium channelopathy.</p

    Subjective response to antipsychotic treatment and compliance in schizophrenia. A naturalistic study comparing olanzapine, risperidone and haloperidol (EFESO Study)

    Get PDF
    BACKGROUND: In order to compare the effectiveness of different antipsychotic drugs in the treatment of schizophrenia it is very important to evaluate subjective response and compliance in patient cohorts treated according to routine clinical practice. METHOD: Outpatients with schizophrenia entered this prospective, naturalistic study when they received a new prescription for an antipsychotic drug. Treatment assignment was based on purely clinical criteria, as the study did not include any experimental intervention. Patients treated with olanzapine, risperidone or haloperidol were included in the analysis. Subjective response was measured using the 10-item version of the Drug Attitude Inventory (DAI-10), and treatment compliance was measured using a physician-rated 4 point categorical scale. RESULTS: A total of 2128 patients initiated treatment (as monotherapy) with olanzapine, 417 with risperidone, and 112 with haloperidol. Olanzapine-treated patients had significantly higher DAI-10 scores and significantly better treatment compliance compared to both risperidone- and haloperidol-treated patients. Risperidone-treated patients had a significantly higher DAI-10 score compared to haloperidol-treated patients. CONCLUSION: Subjective response and compliance were superior in olanzapine-treated patients, compared to patients treated with risperidone and haloperidol, in routine clinical practice. Differences in subjective response were explained largely, but not completely, by differences in incidence of EPS

    Accelerating the Gillespie Ï„-Leaping Method Using Graphics Processing Units

    Get PDF
    The Gillespie Ï„-Leaping Method is an approximate algorithm that is faster than the exact Direct Method (DM) due to the progression of the simulation with larger time steps. However, the procedure to compute the time leap Ï„ is quite expensive. In this paper, we explore the acceleration of the Ï„-Leaping Method using Graphics Processing Unit (GPUs) for ultra-large networks ( reaction channels). We have developed data structures and algorithms that take advantage of the unique hardware architecture and available libraries. Our results show that we obtain a performance gain of over 60x when compared with the best conventional implementations

    GLUT4 and UBC9 Protein Expression Is Reduced in Muscle from Type 2 Diabetic Patients with Severe Insulin Resistance

    Get PDF
    Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance.Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day) were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques.GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9) expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls.Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance

    The International Postal Network and Other Global Flows as Proxies for National Wellbeing.

    Get PDF
    The digital exhaust left by flows of physical and digital commodities provides a rich measure of the nature, strength and significance of relationships between countries in the global network. With this work, we examine how these traces and the network structure can reveal the socioeconomic profile of different countries. We take into account multiple international networks of physical and digital flows, including the previously unexplored international postal network. By measuring the position of each country in the Trade, Postal, Migration, International Flights, IP and Digital Communications networks, we are able to build proxies for a number of crucial socioeconomic indicators such as GDP per capita and the Human Development Index ranking along with twelve other indicators used as benchmarks of national well-being by the United Nations and other international organisations. In this context, we have also proposed and evaluated a global connectivity degree measure applying multiplex theory across the six networks that accounts for the strength of relationships between countries. We conclude by showing how countries with shared community membership over multiple networks have similar socioeconomic profiles. Combining multiple flow data sources can help understand the forces which drive economic activity on a global level. Such an ability to infer proxy indicators in a context of incomplete information is extremely timely in light of recent discussions on measurement of indicators relevant to the Sustainable Development Goals.Project LASAGNE Contract No. 318132 (STREP) - funded by the European CommissionThis is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.015597

    Optimal Resting-Growth Strategies of Microbial Populations in Fluctuating Environments

    Get PDF
    Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments

    E4orf1: A Novel Ligand That Improves Glucose Disposal in Cell Culture

    Get PDF
    Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance(IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 ‘requires’ E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as ‘sufficient’ to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras–the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large(Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif(PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs
    • …
    corecore