223 research outputs found

    Validação de 3 Equipamentos de TDR (Reflectometria no Domínio do Tempo) para a Medida da Umidade de Solos.

    Get PDF
    bitstream/CNPDIA/10455/1/CT61_2004.pd

    Cemented horizons and hardpans in the coastal tablelands of Northeastern Brazil.

    Get PDF
    Horizons with varying degrees of cementation are a common feature of the soils from the coastal tablelands of Northeastern Brazil. In most cases, these horizons are represented by the following subsurface horizons: fragipan, duripan, ortstein, and placic. The aims of this study were to analyze differences regarding the development and the degree of expression of cementation in soils from the coastal tablelands of Northeastern Brazil: Planossolo HĂĄplico (p-SX), Espodossolo HumilĂșvico (p-EK), Espodossolo FerrihumilĂșvico (p-ESK), and Argissolo Acinzentado (p-PAC) pedons. The pedons studied displayed features related to drainage impediments. The cemented horizons from p-SX and p-EK had the same designation (Btgm), displaying a duric character that coincided with gleization features and are under podzolized horizons. In the p-ESK, the podzolization process is of such magnitude that it leads to the cementation of its own spodic horizons, which were both of the ortstein type (Bhsx and Bsm). In the p-PAC cementation is observed in two placic horizons and in the Btx/Bt horizon, as well as in the upper parts of the Bt/Btx horizon. Analysis of the micrographies from the cemented horizons showed predominance of a low porosity matrix. Such porosity is relatively greater in the horizons of ?x? subscript than in the horizons with duric character. The Fe segregation lines were notable in the cemented horizons from p-EK and p-PAC, which corroborates the presence of placic horizons in such pedons. The preponderance of kaolinite in the clay fraction was widely verified in all the cemented horizons analyzed. Water immersion tests were the criteria adopted to define the duric character of the Btgm horizons from p-SX and p-EK, and in the Bsm horizon from the p-ESK. These tests were also used to confirm field morphology. In most cases, the maximum values of Fe, Al, and Si, determined by different extractions, occurred in positions overlaying the cemented horizons, whether they were spodic or not. The extracts of the aqueous solution displayed a noticeable accumulation of Si in the cemented horizons, except in the p-PAC. The presence of argillans in all cemented horizons allows them to be defined as illuvial, with the exception of the placic horizons, regardless of the presence of podzolization processes. The cemented horizons were preponderantly apedal, with a matrix of little porosity. The Fe, Al, and Si contents extracted by acid ammonium oxalate were effective at highlighting the influence of compounds with a low degree of crystallinity in the morphology of cemented horizons

    Cloreto de cobre (CuCl2) como extrator de Al associado à matéria orgùnica em Espodossolos do litoral do Estado de São Paulo.

    Get PDF
    O estudo objetivou avaliar a capacidade extratora do CuCl2 como reagente seletivo de alumínio associado à matéria orgùnica em solos representativos sob vegetação de restinga do Estado de São Paulo. Os resultados foram comparados ao pirofosfato de sódio e a outros reagentes seletivos, seguindo-se as interpretaçÔes comumente observadas na literatura quanto à capacidade extratora e seletividade dos reagentes utilizados.bitstream/item/32367/1/Bol-PD-158.pd

    Cellular Immunity Confers Transient Protection in Experimental Buruli Ulcer following BCG or Mycolactone-Negative Mycobacterium ulcerans Vaccination

    Get PDF
    BACKGROUND: Buruli ulcer (BU) is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-gamma T cell response in the draining lymph node (DLN). BCG vaccination also resulted in cell-mediated immunity (CMI) in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-gamma and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. CONCLUSIONS/SIGNIFICANCE: The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised

    Neuro-immune signatures in chronic low back pain subtypes

    Get PDF
    We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine, and Gulf War Illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18 kDa translocator protein, which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple etiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct “neuroinflammatory signatures”. To further explore this hypothesis, we tested whether neuroinflammatory signal can characterize putative etiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. “radicular” vs. “axial” back pain). Fifty-four chronic low back pain patients, twenty-six with axial back pain (43.7 ± 16.6 y.o. [mean±SD]) and twenty-eight with radicular back pain (48.3 ± 13.2 y.o.), underwent PET/MRI with [11C]PBR28, a second-generation radioligand for the 18 kDa translocator protein. [11C]PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the [11C]PBR28 data 1) to functionally localize the primary somatosensory cortex back and leg subregions and 2) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of “fibromyalgianess” (i.e. the degree of pain centralization, or “nociplastic pain”). Furthermore, statistical mediation models were employed to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, [11C]PBR28 PET signal and functional connectivity to the thalamus were: 1) higher in radicular compared to axial back pain patients, 2) positively correlated with each other and 3) positively correlated with fibromyalgianess scores, across groups. Finally, 4) fibromyalgianess mediated the association between [11C]PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of “neuroinflammatory signatures” that are accompanied by neurophysiological changes, and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about inter-individual variability in neuro-immune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches

    Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles

    Get PDF
    There are very few drug delivery systems that target key organs via the oral route, as oral delivery advances normally address gastrointestinal drug dissolution, permeation, and stability. Here we introduce a nanomedicine in which nanoparticles, while also protecting the drug from gastric degradation, are taken up by the gastrointestinal epithelia and transported to the lung, liver, and spleen, thus selectively enhancing drug bioavailability in these target organs and diminishing kidney exposure (relevant to nephrotoxic drugs). Our work demonstrates, for the first time, that oral particle uptake and translocation to specific organs may be used to achieve a beneficial therapeutic response. We have illustrated this using amphotericin B, a nephrotoxic drug encapsulated within <i>N</i>-palmitoyl-<i>N</i>-methyl-<i>N</i>,<i>N</i>-dimethyl-<i>N</i>,<i>N</i>,<i>N</i>-trimethyl-6-<i>O</i>-glycol chitosan (GCPQ) nanoparticles, and have evidenced our approach in three separate disease states (visceral leishmaniasis, candidiasis, and aspergillosis) using industry standard models of the disease in small animals. The oral bioavailability of AmB-GCPQ nanoparticles is 24%. In all disease models, AmB-GCPQ nanoparticles show comparable efficacy to parenteral liposomal AmB (AmBisome). Our work thus paves the way for others to use nanoparticles to achieve a specific targeted delivery of drug to key organs via the oral route. This is especially important for drugs with a narrow therapeutic index

    Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model

    Get PDF
    Author Summary: Buruli Ulcer (BU), caused by Mycobacterium ulcerans, is a necrotizing disease of the skin, subcutaneous tissue and bone. Standard treatment of BU patients consists of a combination of the antibiotics rifampicin and streptomycin for 8 weeks. However, in advanced stages of the disease, surgical resection of the destroyed skin is still required. The use of bacterial viruses (bacteriophages) for the control of bacterial infections has been considered as an alternative or a supplement to antibiotic chemotherapy. By using a mouse model of M. ulcerans footpad infection, we show that mice treated with a single subcutaneous injection of the mycobacteriophage D29 present decreased footpad pathology associated with a reduction of the bacterial burden. In addition, D29 treatment induced increased levels of IFN-Îł and TNF in M. ulcerans -infected footpads, correlating with a predominance of a mononuclear infiltrate. These findings suggest the potential use of phage therapy in BU, as a novel therapeutic approach against this disease, particularly in advanced stages where bacteria are found primarily in an extracellular location in the subcutaneous tissue, and thus immediately accessible by lytic phages.This work was supported by a grant from the Health Services of Fundacao Calouste Gulbenkian, and the Portuguese Science and Technology Foundation (FCT) fellowships SFRH/BPD/64032/2009, SFRH/BD/41598/2007, and SFRH/BPD/68547/2010 to GT, TGM, and AGF, respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • 

    corecore