649 research outputs found

    The SAMI Galaxy Survey: gas content and interaction as the drivers of kinematic asymmetry

    Get PDF
    In order to determine the causes of kinematic asymmetry in the Hα\alpha gas in the SAMI Galaxy Survey sample, we investigate the comparative influences of environment and intrinsic properties of galaxies on perturbation. We use spatially resolved Hα\alpha velocity fields from the SAMI Galaxy Survey to quantify kinematic asymmetry (vasym‟\overline{v_{asym}}) in nearby galaxies and environmental and stellar mass data from the GAMA survey. {We find that local environment, measured as distance to nearest neighbour, is inversely correlated with kinematic asymmetry for galaxies with log⁥(M∗/M⊙)>10.0\mathrm{\log(M_*/M_\odot)}>10.0, but there is no significant correlation for galaxies with log⁥(M∗/M⊙)<10.0\mathrm{\log(M_*/M_\odot)}<10.0. Moreover, low mass galaxies (log⁥(M∗/M⊙)<9.0\mathrm{\log(M_*/M_\odot)}<9.0) have greater kinematic asymmetry at all separations, suggesting a different physical source of asymmetry is important in low mass galaxies.} We propose that secular effects derived from gas fraction and gas mass may be the primary causes of asymmetry in low mass galaxies. High gas fraction is linked to high σmV\frac{\sigma_{m}}{V} (where σm\sigma_m is Hα\alpha velocity dispersion and VV the rotation velocity), which is strongly correlated with vasym‟\overline{v_{asym}}, and galaxies with log⁥(M∗/M⊙)<9.0\log(M_*/M_\odot)<9.0 have offset σmV‟\overline{\frac{\sigma_{m}}{V}} from the rest of the sample. Further, asymmetry as a fraction of dispersion decreases for galaxies with log⁥(M∗/M⊙)<9.0\log(M_*/M_\odot)<9.0. Gas mass and asymmetry are also inversely correlated in our sample. We propose that low gas masses in dwarf galaxies may lead to asymmetric distribution of gas clouds, leading to increased relative turbulence.Comment: 15 pages, 20 figure

    The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    Get PDF
    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically-selected samples of galaxies is inferred. We implement an efficient and optimised algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the "spin" parameter proxy Lambda_Re. In particular, low spin systems have a higher occurrence of triaxiality, while high spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multi-merger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.Comment: 15 pages, 11 figures, MNRAS in prin

    The SAMI Galaxy Survey: The Low-Redshift Stellar Mass Tully-Fisher Relation

    Get PDF
    We investigate the Tully-Fisher Relation (TFR) for a morphologically and kine- matically diverse sample of galaxies from the SAMI Galaxy Survey using 2 dimensional spatially resolved Halpha velocity maps and find a well defined relation across the stellar mass range of 8.0 < log(M*) < 11.5. We use an adaptation of kinemetry to parametrise the kinematic Halpha asymmetry of all galaxies in the sample, and find a correlation between scatter (i.e. residuals off the TFR) and asymmetry. This effect is pronounced at low stellar mass, corresponding to the inverse relationship between stellar mass and kinematic asymmetry found in previous work. For galaxies with log(M*) < 9.5, 25 +/- 3% are scattered below the root mean square (RMS) of the TFR, whereas for galaxies with log(M*) > 9.5 the fraction is 10 +/- 1% We use 'simulated slits' to directly compare our results with those from long slit spectroscopy and find that aligning slits with the photometric, rather than the kinematic, position angle, increases global scatter below the TFR. Further, kinematic asymmetry is correlated with misalignment between the photometric and kinematic position angles. This work demonstrates the value of 2D spatially resolved kinematics for accurate TFR studies; integral field spectroscopy reduces the underestimation of rotation velocity that can occur from slit positioning off the kinematic axis

    The SAMI Galaxy Survey: Revising the Fraction of Slow Rotators in IFS Galaxy Surveys

    Get PDF
    The fraction of galaxies supported by internal rotation compared to galaxies stabilized by internal pressure provides a strong constraint on galaxy formation models. In integral field spectroscopy surveys, this fraction is biased because survey instruments typically only trace the inner parts of the most massive galaxies. We present aperture corrections for the two most widely used stellar kinematic quantities V/σV/\sigma and λR\lambda_{R}. Our demonstration involves integral field data from the SAMI Galaxy Survey and the ATLAS3D^{\rm{3D}} Survey. We find a tight relation for both V/σV/\sigma and λR\lambda_{R} when measured in different apertures that can be used as a linear transformation as a function of radius, i.e., a first-order aperture correction. We find that V/σV/\sigma and λR\lambda_{R} radial growth curves are well approximated by second order polynomials. By only fitting the inner profile (0.5ReR_{\rm{e}}), we successfully recover the profile out to one ReR_{\rm{e}} if a constraint between the linear and quadratic parameter in the fit is applied. However, the aperture corrections for V/σV/\sigma and λR\lambda_{R} derived by extrapolating the profiles perform as well as applying a first-order correction. With our aperture-corrected λR\lambda_{R} measurements, we find that the fraction of slow rotating galaxies increases with stellar mass. For galaxies with log⁥M∗/M⊙>\log M_{*}/M_{\odot}> 11, the fraction of slow rotators is 35.9±4.335.9\pm4.3 percent, but is underestimated if galaxies without coverage beyond one ReR_{\rm{e}} are not included in the sample (24.2±5.324.2\pm5.3 percent). With measurements out to the largest aperture radius the slow rotator fraction is similar as compared to using aperture corrected values (38.3±4.438.3\pm4.4 percent). Thus, aperture effects can significantly bias stellar kinematic IFS studies, but this bias can now be removed with the method outlined here.Comment: Accepted for Publication in the Monthly Notices of the Royal Astronomical Society. 16 pages and 11 figures. The key figures of the paper are: 1, 4, 9, and 1

    The SAMI Galaxy Survey: Towards a unified dynamical scaling relation for galaxies of all types

    Get PDF
    We take advantage of the first data from the Sydney-AAO Multi-object Integral field (SAMI) Galaxy Survey to investigate the relation between the kinematics of gas and stars, and stellar mass in a comprehensive sample of nearby galaxies. We find that all 235 objects in our sample, regardless of their morphology, lie on a tight relation linking stellar mass (M∗M_{*}) to internal velocity quantified by the S0.5S_{0.5} parameter, which combines the contribution of both dispersion (σ\sigma) and rotational velocity (VrotV_{rot}) to the dynamical support of a galaxy (S0.5=0.5Vrot2+σ2S_{0.5}=\sqrt{0.5V_{rot}^{2}+\sigma^{2}}). Our results are independent of the baryonic component from which σ\sigma and VrotV_{rot} are estimated, as the S0.5S_{0.5} of stars and gas agree remarkably well. This represents a significant improvement compared to the canonical M∗M_{*} vs. VrotV_{rot} and M∗M_{*} vs. σ\sigma relations. Not only is no sample pruning necessary, but also stellar and gas kinematics can be used simultaneously, as the effect of asymmetric drift is taken into account once VrotV_{rot} and σ\sigma are combined. Our findings illustrate how the combination of dispersion and rotational velocities for both gas and stars can provide us with a single dynamical scaling relation valid for galaxies of all morphologies across at least the stellar mass range 8.5<log(M∗/M⊙)<<log(M_{*}/M_{\odot})<11. Such relation appears to be more general and at least as tight as any other dynamical scaling relation, representing a unique tool for investigating the link between galaxy kinematics and baryonic content, and a less biased comparison with theoretical models.Comment: 6 pages, 4 figures. Accepted for publication in ApJ Letter

    Homoclinic chaos in the dynamics of a general Bianchi IX model

    Get PDF
    The dynamics of a general Bianchi IX model with three scale factors is examined. The matter content of the model is assumed to be comoving dust plus a positive cosmological constant. The model presents a critical point of saddle-center-center type in the finite region of phase space. This critical point engenders in the phase space dynamics the topology of stable and unstable four dimensional tubes R×S3R \times S^3, where RR is a saddle direction and S3S^3 is the manifold of unstable periodic orbits in the center-center sector. A general characteristic of the dynamical flow is an oscillatory mode about orbits of an invariant plane of the dynamics which contains the critical point and a Friedmann-Robertson-Walker (FRW) singularity. We show that a pair of tubes (one stable, one unstable) emerging from the neighborhood of the critical point towards the FRW singularity have homoclinic transversal crossings. The homoclinic intersection manifold has topology R×S2R \times S^2 and is constituted of homoclinic orbits which are bi-asymptotic to the S3S^3 center-center manifold. This is an invariant signature of chaos in the model, and produces chaotic sets in phase space. The model also presents an asymptotic DeSitter attractor at infinity and initial conditions sets are shown to have fractal basin boundaries connected to the escape into the DeSitter configuration (escape into inflation), characterizing the critical point as a chaotic scatterer.Comment: 11 pages, 6 ps figures. Accepted for publication in Phys. Rev.

    Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover

    Get PDF
    Vortex arrays in type-II superconductors reflect the translational symmetry of an infinite system. There are cases, however, such as ultracold trapped Fermi gases and the crust of neutron stars, where finite-size effects make it complex to account for the geometrical arrangement of vortices. Here, we self-consistently generate these arrays of vortices at zero and finite temperature through a microscopic description of the non-homogeneous superfluid based on a differential equation for the local order parameter, obtained by coarse graining the Bogoliubov–de Gennes (BdG) equations. In this way, the strength of the inter-particle interaction is varied along the BCS–BEC crossover, from largely overlapping Cooper pairs in the Bardeen–Cooper–Schrieffer (BCS) limit to dilute composite bosons in the Bose–Einstein condensed (BEC) limit. Detailed comparison with two landmark experiments on ultracold Fermi gases, aimed at revealing the presence of the superfluid phase, brings out several features that make them relevant for other systems in nature as well

    Observational Manifestations of the First Protogalaxies in the 21 cm Line

    Full text link
    The absorption properties of the first low-mass protogalaxies (mini-halos) forming at high redshifts in the 21-cm line of atomic hydrogen are considered. The absorption properties of these protogalaxies are shown to depend strongly on both their mass and evolutionary status. The optical depths in the line reach ∌\sim0.1-0.2 for small impact parameters of the line of sight. When a protogalaxy being compressed, the influence of gas accretion can be seen manifested in a non-monotonic frequency dependence of the optical depth. The absorption characteristics in the 21-cm line are determined by the thermal and dynamical evolution of the gas in protogalaxies. Since the theoretical line width in the observer's reference frame is 1-6 kHz and the expected separation between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure

    Spherical symmetry in f(R)f(R)-gravity

    Full text link
    Spherical symmetry in f(R)f(R) gravity is discussed in details considering also the relations with the weak field limit. Exact solutions are obtained for constant Ricci curvature scalar and for Ricci scalar depending on the radial coordinate. In particular, we discuss how to obtain results which can be consistently compared with General Relativity giving the well known post-Newtonian and post-Minkowskian limits. Furthermore, we implement a perturbation approach to obtain solutions up to the first order starting from spherically symmetric backgrounds. Exact solutions are given for several classes of f(R)f(R) theories in both R=R = constant and R=R(r)R = R(r).Comment: 13 page

    Hybrid photonic-bandgap accelerating cavities

    Full text link
    In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added; minor changes in the tex
    • 

    corecore