684 research outputs found
The SAMI Galaxy Survey: gas content and interaction as the drivers of kinematic asymmetry
In order to determine the causes of kinematic asymmetry in the H gas
in the SAMI Galaxy Survey sample, we investigate the comparative influences of
environment and intrinsic properties of galaxies on perturbation. We use
spatially resolved H velocity fields from the SAMI Galaxy Survey to
quantify kinematic asymmetry () in nearby galaxies and
environmental and stellar mass data from the GAMA survey.
{We find that local environment, measured as distance to nearest neighbour,
is inversely correlated with kinematic asymmetry for galaxies with
, but there is no significant correlation for
galaxies with . Moreover, low mass galaxies
() have greater kinematic asymmetry at all
separations, suggesting a different physical source of asymmetry is important
in low mass galaxies.}
We propose that secular effects derived from gas fraction and gas mass may be
the primary causes of asymmetry in low mass galaxies. High gas fraction is
linked to high (where is H velocity
dispersion and the rotation velocity), which is strongly correlated with
, and galaxies with have offset
from the rest of the sample. Further,
asymmetry as a fraction of dispersion decreases for galaxies with
. Gas mass and asymmetry are also inversely correlated
in our sample. We propose that low gas masses in dwarf galaxies may lead to
asymmetric distribution of gas clouds, leading to increased relative
turbulence.Comment: 15 pages, 20 figure
The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies
Using the stellar kinematic maps and ancillary imaging data from the Sydney
AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of
kinematically-selected samples of galaxies is inferred. We implement an
efficient and optimised algorithm to fit the intrinsic shape of galaxies using
an established method to simultaneously invert the distributions of apparent
ellipticities and kinematic misalignments. The algorithm output compares
favourably with previous studies of the intrinsic shape of galaxies based on
imaging alone and our re-analysis of the ATLAS3D data. Our results indicate
that most galaxies are oblate axisymmetric. We show empirically that the
intrinsic shape of galaxies varies as a function of their rotational support as
measured by the "spin" parameter proxy Lambda_Re. In particular, low spin
systems have a higher occurrence of triaxiality, while high spin systems are
more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies
is linked to their formation and merger histories. Galaxies with high spin
values have intrinsic shapes consistent with dissipational minor mergers, while
the intrinsic shape of low-spin systems is consistent with dissipationless
multi-merger assembly histories. This range in assembly histories inferred from
intrinsic shapes is broadly consistent with expectations from cosmological
simulations.Comment: 15 pages, 11 figures, MNRAS in prin
The SAMI Galaxy Survey: The Low-Redshift Stellar Mass Tully-Fisher Relation
We investigate the Tully-Fisher Relation (TFR) for a morphologically and
kine- matically diverse sample of galaxies from the SAMI Galaxy Survey using 2
dimensional spatially resolved Halpha velocity maps and find a well defined
relation across the stellar mass range of 8.0 < log(M*) < 11.5. We use an
adaptation of kinemetry to parametrise the kinematic Halpha asymmetry of all
galaxies in the sample, and find a correlation between scatter (i.e. residuals
off the TFR) and asymmetry. This effect is pronounced at low stellar mass,
corresponding to the inverse relationship between stellar mass and kinematic
asymmetry found in previous work. For galaxies with log(M*) < 9.5, 25 +/- 3%
are scattered below the root mean square (RMS) of the TFR, whereas for galaxies
with log(M*) > 9.5 the fraction is 10 +/- 1% We use 'simulated slits' to
directly compare our results with those from long slit spectroscopy and find
that aligning slits with the photometric, rather than the kinematic, position
angle, increases global scatter below the TFR. Further, kinematic asymmetry is
correlated with misalignment between the photometric and kinematic position
angles. This work demonstrates the value of 2D spatially resolved kinematics
for accurate TFR studies; integral field spectroscopy reduces the
underestimation of rotation velocity that can occur from slit positioning off
the kinematic axis
The SAMI Galaxy Survey: Revising the Fraction of Slow Rotators in IFS Galaxy Surveys
The fraction of galaxies supported by internal rotation compared to galaxies
stabilized by internal pressure provides a strong constraint on galaxy
formation models. In integral field spectroscopy surveys, this fraction is
biased because survey instruments typically only trace the inner parts of the
most massive galaxies. We present aperture corrections for the two most widely
used stellar kinematic quantities and . Our
demonstration involves integral field data from the SAMI Galaxy Survey and the
ATLAS Survey. We find a tight relation for both and
when measured in different apertures that can be used as a linear
transformation as a function of radius, i.e., a first-order aperture
correction. We find that and radial growth curves are
well approximated by second order polynomials. By only fitting the inner
profile (0.5), we successfully recover the profile out to one
if a constraint between the linear and quadratic parameter in the
fit is applied. However, the aperture corrections for and
derived by extrapolating the profiles perform as well as applying
a first-order correction. With our aperture-corrected
measurements, we find that the fraction of slow rotating galaxies increases
with stellar mass. For galaxies with 11, the fraction
of slow rotators is percent, but is underestimated if galaxies
without coverage beyond one are not included in the sample
( percent). With measurements out to the largest aperture radius
the slow rotator fraction is similar as compared to using aperture corrected
values ( percent). Thus, aperture effects can significantly bias
stellar kinematic IFS studies, but this bias can now be removed with the method
outlined here.Comment: Accepted for Publication in the Monthly Notices of the Royal
Astronomical Society. 16 pages and 11 figures. The key figures of the paper
are: 1, 4, 9, and 1
The SAMI Galaxy Survey: Towards a unified dynamical scaling relation for galaxies of all types
We take advantage of the first data from the Sydney-AAO Multi-object Integral
field (SAMI) Galaxy Survey to investigate the relation between the kinematics
of gas and stars, and stellar mass in a comprehensive sample of nearby
galaxies. We find that all 235 objects in our sample, regardless of their
morphology, lie on a tight relation linking stellar mass () to internal
velocity quantified by the parameter, which combines the contribution
of both dispersion () and rotational velocity () to the
dynamical support of a galaxy (). Our
results are independent of the baryonic component from which and
are estimated, as the of stars and gas agree remarkably
well. This represents a significant improvement compared to the canonical
vs. and vs. relations. Not only is no sample
pruning necessary, but also stellar and gas kinematics can be used
simultaneously, as the effect of asymmetric drift is taken into account once
and are combined. Our findings illustrate how the
combination of dispersion and rotational velocities for both gas and stars can
provide us with a single dynamical scaling relation valid for galaxies of all
morphologies across at least the stellar mass range
8.511. Such relation appears to be more general and at
least as tight as any other dynamical scaling relation, representing a unique
tool for investigating the link between galaxy kinematics and baryonic content,
and a less biased comparison with theoretical models.Comment: 6 pages, 4 figures. Accepted for publication in ApJ Letter
Homoclinic chaos in the dynamics of a general Bianchi IX model
The dynamics of a general Bianchi IX model with three scale factors is
examined. The matter content of the model is assumed to be comoving dust plus a
positive cosmological constant. The model presents a critical point of
saddle-center-center type in the finite region of phase space. This critical
point engenders in the phase space dynamics the topology of stable and unstable
four dimensional tubes , where is a saddle direction and
is the manifold of unstable periodic orbits in the center-center sector.
A general characteristic of the dynamical flow is an oscillatory mode about
orbits of an invariant plane of the dynamics which contains the critical point
and a Friedmann-Robertson-Walker (FRW) singularity. We show that a pair of
tubes (one stable, one unstable) emerging from the neighborhood of the critical
point towards the FRW singularity have homoclinic transversal crossings. The
homoclinic intersection manifold has topology and is constituted
of homoclinic orbits which are bi-asymptotic to the center-center
manifold. This is an invariant signature of chaos in the model, and produces
chaotic sets in phase space. The model also presents an asymptotic DeSitter
attractor at infinity and initial conditions sets are shown to have fractal
basin boundaries connected to the escape into the DeSitter configuration
(escape into inflation), characterizing the critical point as a chaotic
scatterer.Comment: 11 pages, 6 ps figures. Accepted for publication in Phys. Rev.
Vortex arrays in neutral trapped Fermi gases through the BCSâBEC crossover
Vortex arrays in type-II superconductors reflect the translational symmetry of an infinite system. There are cases, however, such as ultracold trapped Fermi gases and the crust of neutron stars, where finite-size effects make it complex to account for the geometrical arrangement of vortices. Here, we self-consistently generate these arrays of vortices at zero and finite temperature through a microscopic description of the non-homogeneous superfluid based on a differential equation for the local order parameter, obtained by coarse graining the Bogoliubovâde Gennes (BdG) equations. In this way, the strength of the inter-particle interaction is varied along the BCSâBEC crossover, from largely overlapping Cooper pairs in the BardeenâCooperâSchrieffer (BCS) limit to dilute composite bosons in the BoseâEinstein condensed (BEC) limit. Detailed comparison with two landmark experiments on ultracold Fermi gases, aimed at revealing the presence of the superfluid phase, brings out several features that make them relevant for other systems in nature as well
Observational Manifestations of the First Protogalaxies in the 21 cm Line
The absorption properties of the first low-mass protogalaxies (mini-halos)
forming at high redshifts in the 21-cm line of atomic hydrogen are considered.
The absorption properties of these protogalaxies are shown to depend strongly
on both their mass and evolutionary status. The optical depths in the line
reach 0.1-0.2 for small impact parameters of the line of sight. When a
protogalaxy being compressed, the influence of gas accretion can be seen
manifested in a non-monotonic frequency dependence of the optical depth. The
absorption characteristics in the 21-cm line are determined by the thermal and
dynamical evolution of the gas in protogalaxies. Since the theoretical line
width in the observer's reference frame is 1-6 kHz and the expected separation
between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved
using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure
Spherical symmetry in -gravity
Spherical symmetry in gravity is discussed in details considering also
the relations with the weak field limit. Exact solutions are obtained for
constant Ricci curvature scalar and for Ricci scalar depending on the radial
coordinate. In particular, we discuss how to obtain results which can be
consistently compared with General Relativity giving the well known
post-Newtonian and post-Minkowskian limits. Furthermore, we implement a
perturbation approach to obtain solutions up to the first order starting from
spherically symmetric backgrounds. Exact solutions are given for several
classes of theories in both constant and .Comment: 13 page
Hybrid photonic-bandgap accelerating cavities
In a recent investigation, we studied two-dimensional point-defected photonic
bandgap cavities composed of dielectric rods arranged according to various
representative periodic and aperiodic lattices, with special emphasis on
possible applications to particle acceleration (along the longitudinal axis).
In this paper, we present a new study aimed at highlighting the possible
advantages of using hybrid structures based on the above dielectric
configurations, but featuring metallic rods in the outermost regions, for the
design of extremely-high quality factor, bandgap-based, accelerating
resonators. In this framework, we consider diverse configurations, with
different (periodic and aperiodic) lattice geometries, sizes, and
dielectric/metal fractions. Moreover, we also explore possible improvements
attainable via the use of superconducting plates to confine the electromagnetic
field in the longitudinal direction. Results from our comparative studies,
based on numerical full-wave simulations backed by experimental validations (at
room and cryogenic temperatures) in the microwave region, identify the
candidate parametric configurations capable of yielding the highest quality
factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added;
minor changes in the tex
- âŠ