205 research outputs found

    Spinal intradural extraosseous Ewing's sarcoma

    Get PDF
    Extraosseous Ewing's sarcoma (EES) involving the central nervous system is rare, but can be diagnosed and distinguished from other primitive neuroectodermal tumors (PNET) by identification of the chromosomal translocation (11;22)(q24;q12). We report EES arising from the spinal intradural extramedullary space, based on imaging, histopathological, and molecular data in two men, ages 50 and 60 years old and a review of the literature using PubMed (1970–2009). Reverse transcriptase polymerase chain reaction (RT-PCR) identified the fusion product FL1-EWS. Multimodal therapy, including radiation and alternating chemotherapy including vincristine, cyclophosphamide, doxorubicin and ifosfamide and etoposide led to local tumor control and an initial, favorable therapeutic response. No systemic involvement was seen from the time of diagnosis to the time of last follow-up (26 months) or death (4 years). This report confirms that EES is not confined to the earliest decades of life, and like its rare occurrence as an extra-axial meningeal based mass intracranially, can occasionally present as an intradural mass in the spinal canal without evidence of systemic tumor. Gross total resection followed by multimodal therapy may provide for extended progression free and overall survival

    Histopathology of Growth Anomaly Affecting the Coral, Montipora capitata: Implications on Biological Functions and Population Viability

    Get PDF
    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1–93.7%), symbiotic dinoflagellates (38.8–67.5%), mesenterial filaments (11.2–29.0%), and nematocytes (28.8–46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7–49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat

    European youth care sites serve different populations of adolescents with cannabis use disorder. Baseline and referral data from the INCANT trial

    Get PDF
    Background: MDFT (Multidimensional Family Therapy) is a family based outpatient treatment programme for adolescent problem behaviour. MDFT has been found effective in the USA in adolescent samples differing in severity and treatment delivery settings. On request of five governments (Belgium, France, Germany, the Netherlands, and Switzerland), MDFT has now been tested in the joint INCANT trial (International Cannabis Need of Treatment) for applicability in Western Europe. In each of the five countries, study participants were recruited from the local population of youth seeking or guided to treatment for, among other things, cannabis use disorder. There is little information in the literature if these populations are comparable between sites/countries or not. Therefore, we examined if the study samples enrolled in the five countries differed in baseline characteristics regarding demographics, clinical profile, and treatment delivery setting.Methods: INCANT was a multicentre phase III(b) randomized controlled trial with an open-label, parallel group design. It compared MDFT with treatment as usual (TAU) at and across sites in Berlin, Brussels, Geneva, The Hague and Paris.Participants of INCANT were adolescents of either sex, from 13 through 18 years of age, with a cannabis use disorder (dependence or abuse), and at least one parent willing to take part in the treatment. In total, 450 cases/families were randomized (concealed) into INCANT.Results: We collected data about adolescent and family demographics (age, gender, family composition, school, work, friends, and leisure time). In addition, we gathered data about problem behaviour (substance use, alcohol and cannabis use disorders, delinquency, psychiatric co-morbidity).There were no major differences on any of these measures between the treatment conditions (MDFT and TAU) for any of the sites. However, there were cross-site differences on many variables. Most of these could be explained by variations in treatment culture, as reflected by referral policy, i.e., participants' referral source. We distinguished 'self-determined' referral (common in Brussels and Paris) and referral with some authority-related 'external' coercion (common in Geneva and The Hague). The two referral types were more equally divided in Berlin. Many cross-site baseline differences disappeared when we took referral source into account, but not all.Conclusions: A multisite trial has the advantage of being efficient, but it also carries risks, the most important one being lack of equivalence between local study populations. Our site populations differed in many respects. This is not a problem for analyses and interpretations if the differences somehow can be accounted for. To a major extent, this appeared possible in INCANT. The most important factor underlying the cross-site variations in baseline characteristics was referral source. Correcting for referral source made most differences disappear. Therefore, we will use referral source as a covariate accounting for site differences in future INCANT outcome analyses

    Patterns of Coral Disease across the Hawaiian Archipelago: Relating Disease to Environment

    Get PDF
    In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS

    Bedside Sublingual Video Imaging of Microcirculation in Assessing Bacterial Infection in Cirrhosis

    Get PDF
    Bacterial infections are common in cirrhosis and can lead to life-threatening complications. Sidestream dark-field (SDF) imaging has recently emerged as a noninvasive tool for capturing real-time video images of sublingual microcirculation in critically ill patients with sepsis. The objective of this study was to assess the utility of SDF in determining underlying infection in patients with cirrhosis. Sublingual microcirculation was compared among patients with compensated cirrhosis (Group A, n = 13), cirrhosis without sepsis (Group B, n = 18), cirrhosis with sepsis (Group C, n = 14), and sepsis only (Group D, n = 10). The blood flow was semi-quantitatively evaluated in four equal quadrants in small (10–25 mm); medium (26–50 mm); and large (51–100 mm) sublingual capillaries. The blood flow was described as no flow (0), intermittent flow (1), sluggish flow (2), and continuous flow (3). The overall flow score or microvascular flow index (MFI) was measured for quantitative assessment of microcirculation and predicting power for concurrent infection in cirrhosis. Marked impairment was observed at all levels of microvasculature in Groups B and C when compared with Group A. This effect was restricted to small vessels only when Group B was compared with Group C. MFI < 1.5 was found to have highest sensitivity (100%) and specificity (100%) for infection in decompensated cirrhosis. SDF imaging of sublingual microcirculation can be a useful bedside diagnostic tool to assess bacterial infection in cirrhosis

    Enriched Population of PNS Neurons Derived from Human Embryonic Stem Cells as a Platform for Studying Peripheral Neuropathies

    Get PDF
    BACKGROUND: The absence of a suitable cellular model is a major obstacle for the study of peripheral neuropathies. Human embryonic stem cells hold the potential to be differentiated into peripheral neurons which makes them a suitable candidate for this purpose. However, so far the potential of hESC to differentiate into derivatives of the peripheral nervous system (PNS) was not investigated enough and in particular, the few trials conducted resulted in low yields of PNS neurons. Here we describe a novel hESC differentiation method to produce enriched populations of PNS mature neurons. By plating 8 weeks hESC derived neural progenitors (hESC-NPs) on laminin for two weeks in a defined medium, we demonstrate that over 70% of the resulting neurons express PNS markers and 30% of these cells are sensory neurons. METHODS/FINDINGS: Our method shows that the hNPs express neuronal crest lineage markers in a temporal manner, and by plating 8 weeks hESC-NPs into laminin coated dishes these hNPs were promoted to differentiate and give rise to homogeneous PNS neuronal populations, expressing several PNS lineage-specific markers. Importantly, these cultures produced functional neurons with electrophysiological activities typical of mature neurons. Moreover, supporting this physiological capacity implantation of 8 weeks old hESC-NPs into the neural tube of chick embryos also produced human neurons expressing specific PNS markers in vivo in just a few days. Having the enriched PNS differentiation system in hand, we show for the first time in human PNS neurons the expression of IKAP/hELP1 protein, where a splicing mutation on the gene encoding this protein causes the peripheral neuropathy Familial Dysautonomia. CONCLUSIONS/SIGNIFICANCE: We conclude that this differentiation system to produce high numbers of human PNS neurons will be useful for studying PNS related neuropathies and for developing future drug screening applications for these diseases

    Effects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia

    Get PDF
    Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype
    corecore