160 research outputs found

    VLT FORS2 comparative transmission spectroscopy: Detection of Na in the atmosphere of WASP-39b from the ground

    Get PDF
    We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411–810 nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10 nm on a V = 12.1 mag star. We detect the sodium absorption feature (3.2σ) and find evidence of potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, supporting the interpretation that WASP-39b has a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, with which we obtained HST-quality light curves from the ground

    VLT/FORS2 comparative transmission spectroscopy II: Confirmation of a cloud deck and Rayleigh scattering in WASP-31b, but no potassium?

    Get PDF
    We present transmission spectroscopy of the hot-Jupiter WASP-31b using the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) on the Very Large Telescope during two primary transits. The observations cover a wavelength range of ≈400–840 nm. The light curves are corrupted by significant systematics, but these were to first-order invariant with wavelength and could be removed using a common-mode correction derived from the white light curves. We reach a precision in the transit depth of ≈140 ppm in 15 nm bins, although the precision varies significantly over the wavelength range. Our FORS2 observations confirm the cloud deck previously inferred using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS). We also re-analyse the HST/STIS data using a Gaussian process model, finding excellent agreement with earlier measurements. We reproduce the Rayleigh scattering signature at short wavelengths (5300 Å) and the cloud deck at longer wavelengths. However, our FORS2 observations appear to rule out the large potassium feature previously detected using STIS, yet it is recovered from the HST/STIS data, although with reduced amplitude and significance (≈2.5σ ). The discrepancy between our results and the earlier STIS detection of potassium (≈4.3σ ) is either a result of telluric contamination of the ground-based observations, or an underestimate of the uncertainties for narrow-band features in HST/STIS when using linear basis models to account for the systematics. Our results further demonstrate the use of ground-based multi-object spectrographs for the study of exoplanet atmospheres, and highlight the need for caution in our interpretation of narrow-band features in low-resolution spectra of hot Jupiters

    The Complete transmission spectrum of WASP-39b with a precise water constraint

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8-1.1 microns) and G141 (1.1-1.7 microns) spectroscopic grisms. We measure the predicted high amplitude H2O feature centered at 1.4 microns, and the smaller amplitude features at 0.95 and 1.2 microns, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3-5 microns. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature Teq = 1030(+30,-20) K, and atmospheric metallicity 151 (+48,-46)x solar which is relatively high with respect to the currently established mass-metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.This work is based on observations made with the NASA/ESA Hubble Space Telescope that were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. These observations are associated with programs GO-14169 (PI. HR Wakeford) and GO-14260 (PI. D Deming). D.K.S., H.R.W., T.E., B.D., and N.N., acknowledge funding from the European Research Council (ERC) under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336792. J.G. acknowledges support from Leverhulme Trust. A.L.C. acknowledges support from the STFC. H.R.W. also acknowledges support from the Giacconi Fellowship at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc

    A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c

    Get PDF
    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1. The nature of these planets has yet to be determined, since their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range from depleted to extended hydrogen-dominated atmospheres. Here, we report a space-based measurement of the combined transmission spectrum of the two inner planets made possible by a favorable alignment resulting in their simultaneous transits on 04 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at 10-σ\sigma levels; TRAPPIST-1 b and c are hence unlikely to harbor an extended gas envelope as they lie in a region of parameter space where high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum---from a cloud-free water vapour atmosphere to a Venus-like atmosphere.Comment: Early release to inform further the upcoming review of HST's Cycle 24 proposal

    Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations

    Full text link
    It is possible to learn a great deal about exoplanet atmospheres even when we cannot spatially resolve the planets from their host stars. In this chapter, we overview the basic techniques used to characterize transiting exoplanets - transmission spectroscopy, emission and reflection spectroscopy, and full-orbit phase curve observations. We discuss practical considerations, including current and future observing facilities and best practices for measuring precise spectra. We also highlight major observational results on the chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion

    Get PDF
    PublishedLetterThousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1 to 1.7 μm). Recent studies show that some hot- Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet’s formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3–5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.European Research Council European Union’s Seventh Framework Programme (FP7/2007-2013)NASACNES and the French Agence Nationale de la Recherche (ANR)UK Science and Technology Facilities Council (STFC)NSFTennessee State UniversityState of Tennesse

    An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet.

    Get PDF
    Broad absorption signatures from alkali metals, such as the sodium (Na I) and potassium (K I) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets1-3. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles4-6. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances7-9. Here we report an optical transmission spectrum for the 'hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logεNa = [Formula: see text], and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Zp/Zʘ = [Formula: see text]). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets10-12

    Hubble PanCET: An isothermal day-side atmosphere for the bloated gas-giant HAT-P-32Ab

    Get PDF
    This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordWe present a thermal emission spectrum of the bloated hot Jupiter HAT-P-32Ab from a single eclipse observation made in spatial scan mode with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST). The spectrum covers the wavelength regime from 1.123 to 1.644 microns which is binned into 14 eclipse depths measured to an averaged precision of 104 parts-per million. The spectrum is unaffected by a dilution from the close M-dwarf companion HAT-P-32B, which was fully resolved. We complemented our spectrum with literature results and performed a comparative forward and retrieval analysis with the 1D radiative-convective ATMO model. Assuming solar abundance of the planet atmosphere, we find that the measured spectrum can best be explained by the spectrum of a blackbody isothermal atmosphere with Tp = 1995 +/- 17K, but can equally-well be described by a spectrum with modest thermal inversion. The retrieved spectrum suggests emission from VO at the WFC3 wavelengths and no evidence of the 1.4 micron water feature. The emission models with temperature profiles decreasing with height are rejected at a high confidence. An isothermal or inverted spectrum can imply a clear atmosphere with an absorber, a dusty cloud deck or a combination of both. We find that the planet can have continuum of values for the albedo and recirculation, ranging from high albedo and poor recirculation to low albedo and efficient recirculation. Optical spectroscopy of the planet's day-side or thermal emission phase curves can potentially resolve the current albedo with recirculation degeneracy.NN, DKS and TME acknowledge funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336792. JG acknowledges support from a Leverhulme Trust Research Project Grant. G.W.H. and M.H.W. acknowledge long-term support from Tennessee State University and the State of Tennessee through its Centers of Excellence program and from the Space Telescope Science Institue under HST-GO-14767. This work has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). DE and VB acknowledge the financial support of the SNSF. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No 724427)
    • …
    corecore