157 research outputs found

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs

    Differential expression of collectins in human placenta and role in inflammation during spontaneous Labor.

    Get PDF
    © 2014 Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Collectins, collagen-containing Ca2+ dependent C-type lectins and a class of secretory proteins including SP-A, SP-D and MBL, are integral to immunomodulation and innate immune defense. In the present study, we aimed to investigate their placental transcript synthesis, labor associated differential expression and localization at feto-maternal interface, and their functional implication in spontaneous labor. The study involved using feto-maternal interface (placental/decidual tissues) from two groups of healthy pregnant women at term (≥37 weeks of gestation), undergoing either elective C-section with no labor ('NLc' group, n = 5), or normal vaginal delivery with spontaneous labor ('SLv' group, n = 5). The immune function of SP-D, on term placental explants, was analyzed for cytokine profile using multiplexed cytokine array. SP-A, SP-D and MBL transcripts were observed in the term placenta. The 'SLv' group showed significant up-regulation of SP-D (p = 0.001), and down-regulation of SP-A (p = 0.005), transcripts and protein compared to the 'NLc' group. Significant increase in 43 kDa and 50 kDa SP-D forms in placental and decidual tissues was associated with the spontaneous labor (p<0.05). In addition, the MMP-9-cleaved form of SP-D (25 kDa) was significantly higher in the placentae of 'SLv' group compared to the 'NLc' group (p = 0.002). Labor associated cytokines IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α and MCP-1 showed significant increase (p<0.05) in a dose dependent manner in the placental explants treated with nSP-D and rhSP-D. In conclusion, the study emphasizes that SP-A and SP-D proteins associate with the spontaneous labor and SP-D plausibly contributes to the pro-inflammatory immune milieu of feto-maternal tissues.Funding provided by BT/PR15227/BRB/10/906/2011) Department of Biotechnology (DBT), Government of India http://dbtindia.nic.in/index.asp (TM) and Indian Council of Medical Research (ICMR) Junior Research Fellowship (JRF)/Senior Research Fellowship (SRF), Government of India, www.icmr.nic.in (AKY)

    Breast cancer risk factors and a novel measure of volumetric breast density: cross-sectional study

    Get PDF
    We conducted a cross-sectional study nested within a prospective cohort of breast cancer risk factors and two novel measures of breast density volume among 590 women who had attended Glasgow University (1948–1968), replied to a postal questionnaire (2001) and attended breast screening in Scotland (1989–2002). Volumetric breast density was estimated using a fully automated computer programme applied to digitised film-screen mammograms, from medio-lateral oblique mammograms at the first-screening visit. This measured the proportion of the breast volume composed of dense (non-fatty) tissue (Standard Mammogram Form (SMF)%) and the absolute volume of this tissue (SMF volume, cm3). Median age at first screening was 54.1 years (range: 40.0–71.5), median SMF volume 70.25 cm3 (interquartile range: 51.0–103.0) and mean SMF% 26.3%, s.d.=8.0% (range: 12.7–58.8%). Age-adjusted logistic regression models showed a positive relationship between age at last menstrual period and SMF%, odds ratio (OR) per year later: 1.05 (95% confidence interval: 1.01–1.08, P=0.004). Number of pregnancies was inversely related to SMF volume, OR per extra pregnancy: 0.78 (0.70–0.86, P<0.001). There was a suggestion of a quadratic relationship between birthweight and SMF%, with lowest risks in women born under 2.5 and over 4 kg. Body mass index (BMI) at university (median age 19) and in 2001 (median age 62) were positively related to SMF volume, OR per extra kg m−2 1.21 (1.15–1.28) and 1.17 (1.09–1.26), respectively, and inversely related to SMF%, OR per extra kg m−2 0.83 (0.79–0.88) and 0.82 (0.76–0.88), respectively, P<0.001. Standard Mammogram Form% and absolute SMF volume are related to several, but not all, breast cancer risk factors. In particular, the positive relationship between BMI and SMF volume suggests that volume of dense breast tissue will be a useful marker in breast cancer studies

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    Risk factors for traumatic and non-traumatic lower limb pain among preadolescents: a population-based study of Finnish schoolchildren

    Get PDF
    BACKGROUND: The child's lower limb is the most commonly reported musculoskeletal location with pain and also the most commonly injured site in sports. Some potential risk factors have been studied, but the results are inconsistent. We hypothesized that distinction of traumatic from non-traumatic pain would provide a clearer picture of these factors. The aim of this study is to assess factors associated with lower extremity pain and its impact on preadolescents in a population-based cohort. METHODS: A structured pain questionnaire was completed by 1756 schoolchildren of third and fifth grades to assess musculoskeletal pain, psychosomatic symptoms, subjective disabilities, school absence and frequency of exercise. In addition, hypermobility and physical fitness were measured. RESULTS: The knee was the most common site of pain followed by the ankle-foot and thigh. Of the children who reported pain in their lower extremity, approximately 70% reported at least one disability and 19 % reported school absence attributed to their pain during the previous three-month period. Children with traumatic pain had a higher subjective disability index than those with non-traumatic pain (P = 0.02). Age less than 11 years, headache, abdominal pain, depressive feelings, day tiredness, and vigorous exercise were more common in children with lower limb pain than those free of it. In the stratified analysis, younger age was related to both traumatic and non-traumatic pain groups. Vigorous exercise was positively associated with traumatic pain, while subjects with non-traumatic pain had more frequent psychosomatic symptoms. CONCLUSION: Risk factors and consequences of traumatic and non-traumatic lower limb pain are not similar. Traumatic lower limb pain is associated with practicing vigorous exercise and high level of physical fitness, while non-traumatic pain is more correlated with psychosomatic symptoms. These differences might be one of the reasons for the discrepancy of previous research conclusions. The two conditions need to be treated as different disorders in future studies

    Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae

    Get PDF
    Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish

    Changes in neuronal activation patterns in response to androgen deprivation therapy: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A common treatment option for men with prostate cancer is androgen deprivation therapy (ADT). However, men undergoing ADT may experience physical side effects, changes in quality of life and sometimes psychiatric and cognitive side effects.</p> <p>Methods</p> <p>In this study, hormone naïve patients without evidence of metastases with a rising PSA were treated with nine months of ADT. Functional magnetic resonance imaging (fMRI) of the brain during three visuospatial tasks was performed at baseline prior to treatment and after nine months of ADT in five subjects. Seven healthy control patients, underwent neuroimaging at the same time intervals.</p> <p>Results</p> <p>ADT patients showed reduced, task-related BOLD-fMRI activation during treatment that was not observed in control subjects. Reduction in activation in right parietal-occipital regions from baseline was observed during recall of the spatial location of objects and mental rotation.</p> <p>Conclusions</p> <p>Findings, while preliminary, suggest that ADT reduces task-related neural activation in brain regions that are involved in mental rotation and accurate recall of spatial information.</p

    Low back pain in 17 year olds has substantial impact and represents an important public health disorder: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence of low back pain (LBP) rises rapidly during adolescence, reaching adult levels by the age of 18. It has been suggested that adolescent LBP is benign with minimal impact, despite limited evidence.</p> <p>Methods</p> <p>The aim of this study was to investigate the impact of LBP and the influence of chronicity, gender and presence of other spinal pain comorbidities at age 17. Subjects (n = 1283) were categorised according to experiencing current and chronic LBP, gender and presence of other areas of spinal pain. LBP impact was ascertained via questions regarding seeking professional assistance, using medication, missing school/work, limited normal or recreational physical activity and health related quality of life (HRQOL).</p> <p>Results</p> <p>12.3% of participants reported current but not chronic LBP, while 19.9% reported current chronic LBP. LBP was more commonly reported by females than males. Other spinal pain comorbidities were common in the LBP groups. Impact was greater in subjects with chronic LBP, in females and in those with other spinal pain comorbidities.</p> <p>Conclusion</p> <p>LBP, and particularly chronic LBP, has a significant negative impact at 17 years. It is commonly associated with care seeking, medication use, school absenteeism, and reduced HRQOL. These findings support that adolescent LBP is an important public health issue that requires attention.</p

    Characteristics of chronic non-specific musculoskeletal pain in children and adolescents attending a rheumatology outpatients clinic: a cross-sectional study

    Get PDF
    Background: Chronic non-specific musculoskeletal pain (CNSMSP) may develop in childhood and adolescence, leading to disability and reduced quality of life that continues into adulthood. The purpose of the study was to build a biopsychosocial profile of children and adolescents with CNSMSP. Methods: CNSMSP subjects (n = 30, 18 females, age 7-18) were compared with age matched pain free controls across a number of biopsychosocial domains. Results: In the psychosocial domain CNSMSP subjects had increased levels of anxiety and depression, and had more somatic pain complaints. In the lifestyle domain CNSMSP subjects had lower physical activity levels, but no difference in television or computer use compared to pain free subjects. Physically, CNSMSP subjects tended to sit with a more slumped spinal posture, had reduced back muscle endurance, increased presence of joint hypermobility and poorer gross motor skills. Conclusion: These findings support the notion that CNSMSP is a multidimensional biopsychosocial disorder. Further research is needed to increase understanding of how the psychosocial, lifestyle and physical factors develop and interact in CNSMSP

    Selective targeting of microglia by quantum dots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases.</p> <p>Methods</p> <p>Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies.</p> <p>Results</p> <p>In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity.</p> <p>Conclusions</p> <p>These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.</p
    corecore