567 research outputs found

    Estimated GFR reporting is associated with decreased nonsteroidal anti-inflammatory drug prescribing and increased renal function

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used; however, they are also nephrotoxic with both acute and chronic effects on kidney function. Here we determined NSAID prescribing before and after estimated GFR (eGFR) reporting and evaluate renal function in patients who used NSAIDs but stopped these after their first eGFR report. A population-based longitudinal analysis using a record-linkage database was conducted with the GFR estimated using the four-variable equation from the MDRD study and analyzed by trend test, paired t-test, and logistic regression modeling. Prescriptions for NSAIDs significantly decreased from 39,459 to 35,415 after implementation of eGFR reporting from the second quarter of 2005 compared with the first quarter of 2007. Reporting eGFR was associated with reduced NSAID prescriptions (adjusted odds ratio, 0.78). NSAID prescription rates in the 6 months before April 2006 were 18.8, 15.4, and 7.0% in patients with CKD stages 3, 4, and 5 and 15.5, 10.7, and 6.3%, respectively, after eGFR reporting commenced. In patients who stopped NSAID treatment, eGFR significantly increased from 45.9 to 46.9, 23.9 to 27.1, and 12.4 to 26.4 ml/min per 1.73 m(2) in 1340 stage 3 patients, 162 stage 4 patients, and 9 stage 5 patients, respectively. Thus, NSAID prescribing decreased after the implementation of eGFR reporting, and there were significant improvements in estimated renal function in patients who stopped taking NSAIDs. Hence, eGFR reporting may result in safer prescribing

    Mass distribution in our Galaxy

    Get PDF
    This article summarizes recent work on the luminosity and mass distribution of the Galactic bulge and disk, and on the mass of the Milky Way's dark halo. A new luminosity model consistent with the COBE NIR data and the apparent magnitude distributions of bulge clump giant stars has bulge/bar length of \simeq 3.5\kpc, axis ratios of 1:(0.3-0.4):0.3, and short disk scale-length (\simeq 2.1\kpc). Gas-dynamical flows in the potential of this model with constant M/L fit the terminal velocities in 10degl50deg10\deg\le |l| \le 50\deg very well. The luminous mass distribution with this M/L is consistent with the surface density of known matter near the Sun, but still underpredicts the microlensing optical depth towards the bulge. Together, these facts argue strongly for a massive, near-maximal disk in our L\sim L^\ast, Sbc spiral Galaxy. While the outer rotation curve and global mass distribution are not as readily measured as in similar spiral galaxies, the dark halo mass estimated from satellite velocities is consistent with a flat rotation curve continuing on from the luminous mass distribution

    Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies

    Get PDF
    Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development

    Medication administration errors for older people in long-term residential care

    Get PDF
    Background Older people in long-term residential care are at increased risk of medication errors. The purpose of this study was to evaluate a computerised barcode medication management system designed to improve drug administrations in residential and nursing homes, including comparison of error rates and staff awareness in both settings. Methods All medication administrations were recorded prospectively for 345 older residents in thirteen care homes during a 3-month period using the computerised system. Staff were surveyed to identify their awareness of administration errors prior to system introduction. Overall, 188,249 attempts to administer medication were analysed to determine the prevalence of potential medication administration errors (MAEs). Error classifications included attempts to administer medication at the wrong time, to the wrong person or discontinued medication. Analysis compared data at residential and nursing home level and care and nursing staff groups. Results Typically each resident was exposed to 206 medication administration episodes every month and received nine different drugs. Administration episodes were more numerous (p < 0.01) in nursing homes (226.7 per resident) than in residential homes (198.7). Prior to technology introduction, only 12% of staff administering drugs reported they were aware of administration errors being averted in their care home. Following technology introduction, 2,289 potential MAEs were recorded over three months. The most common MAE was attempting to give medication at the wrong time. On average each resident was exposed to 6.6 potential errors. In total, 90% of residents were exposed to at least one MAE with over half (52%) exposed to serious errors such as attempts to give medication to the wrong resident. MAEs rates were significantly lower (p < 0.01) in residential homes than nursing homes. The level of non-compliance with system alerts was low in both settings (0.075% of administrations) demonstrating virtually complete error avoidance. Conclusion Potentially inappropriate administration of medication is a serious problem in long-term residential care. A computerised barcode system can accurately and automatically detect inappropriate attempts to administer drugs to residents. This tool can reliably be used by care staff as well as nurses to improve quality of care and patient safety

    Virtual rehabilitation for multiple sclerosis using a Kinect-based system: randomized controlled trial

    Get PDF
    ©Jose-Antonio Lozano-Quilis, Hermenegildo Gil-Gómez, Jose-Antonio Gil-Gómez, Sergio Albiol-Pérez, Guillermo Palacios-Navarro, Habib M Fardoun, Abdulfattah S Mashat. Originally published in JMIR Serious Games (http://games.jmir.org), 12.11.2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Serious Games, is properly cited. The complete bibliographic information, a link to the original publication on http://games.jmir.org, as well as this copyright and license information must be included.Background: The methods used for the motor rehabilitation of patients with neurological disorders include a number of different rehabilitation exercises. For patients who have been diagnosed with multiple sclerosis (MS), the performance of motor rehabilitation exercises is essential. Nevertheless, this rehabilitation may be tedious, negatively influencing patients motivation and adherence to treatment. Objective: We present RemoviEM, a system based on Kinect that uses virtual reality (VR) and natural user interfaces (NUI) to offer patients with MS an intuitive and motivating way to perform several motor rehabilitation exercises. It offers therapists a new motor rehabilitation tool for the rehabilitation process, providing feedback on the patient s progress. Moreover, it is a low-cost system, a feature that can facilitate its integration in clinical rehabilitation centers. Methods: A randomized and controlled single blinded study was carried out to assess the influence of a Kinect-based virtual rehabilitation system on the balance rehabilitation of patients with MS. This study describes RemoviEM and evaluates its effectiveness compared to standard rehabilitation. To achieve this objective, a clinical trial was carried out. Eleven patients from a MS association participated in the clinical trial. The mean age was 44.82 (SD 10.44) and the mean time from diagnosis (years) was 9.77 (SD 10.40). Clinical effectiveness was evaluated using clinical balance scales. Results: Significant group-by-time interaction was detected in the scores of the Berg Balance Scale (P=.011) and the Anterior Reach Test in standing position (P=.011). Post-hoc analysis showed greater improvement in the experimental group for these variables than in the control group for these variables. The Suitability Evaluation Questionnaire (SEQ) showed good results in usability, acceptance, security, and safety for the evaluated system. Conclusions: The results obtained suggest that RemoviEM represents a motivational and effective alternative to traditional motor rehabilitation for MS patients. These results have encouraged us to improve the system with new exercises, which are currently being developed.This contribution was partially funded by the Generalitat Valenciana ("Ajudes per a la realitzacio de projectes d'I+D per a grups d'investigacion emergents", projecte GV/2012/069) and by the Fundacion Antonio Gargallo ("Ayudas financiadas por la Obra Social de Ibercaja de proyectos de investigacion 2013", proyecto 2013/B001).Lozano Quilis, JA.; Gil Gómez, H.; Gil-Gómez, J.; Albiol Pérez, S.; Palacios Navarro, G.; Fardoun, HM.; Mashat, AS. (2014). Virtual rehabilitation for multiple sclerosis using a Kinect-based system: randomized controlled trial. JMIR Serious Games. 2(2). https://doi.org/10.2196/games.2933Se1222Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A review. Neurorehabilitation, 25(1), 29-44. doi:10.3233/nre-2009-0497Lange, B., Flynn, S., Proffitt, R., Chang, C.-Y., & «Skip» Rizzo, A. (2010). Development of an Interactive Game-Based Rehabilitation Tool for Dynamic Balance Training. Topics in Stroke Rehabilitation, 17(5), 345-352. doi:10.1310/tsr1705-345Lozano, J. A., Montesa, J., Juan, M. C., Alcañiz, M., Rey, B., Gil, J., … Morganti, F. (2005). VR-Mirror: A Virtual Reality System for Mental Practice in Post-Stroke Rehabilitation. Lecture Notes in Computer Science, 241-251. doi:10.1007/11536482_23Lange, B. S., Requejo, P., Flynn, S. M., Rizzo, A. A., Valero-Cuevas, F. J., Baker, L., & Winstein, C. (2010). The Potential of Virtual Reality and Gaming to Assist Successful Aging with Disability. Physical Medicine and Rehabilitation Clinics of North America, 21(2), 339-356. doi:10.1016/j.pmr.2009.12.007Wuang, Y.-P., Chiang, C.-S., Su, C.-Y., & Wang, C.-C. (2011). Effectiveness of virtual reality using Wii gaming technology in children with Down syndrome. Research in Developmental Disabilities, 32(1), 312-321. doi:10.1016/j.ridd.2010.10.002Chang, Y.-J., Chen, S.-F., & Huang, J.-D. (2011). A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities, 32(6), 2566-2570. doi:10.1016/j.ridd.2011.07.002Da GamaAChavezTFigueiredoLTeichriebVPoster: improving motor rehabilitation process through a natural interaction based system using kinect sensor, IEEE Symposium on 3D User Interfaces 2012: 145-1462012IEEE Symposium on 3D User InterfacesMar 4-5Costa Mesa, CABaram, Y., & Miller, A. (2006). Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology, 66(2), 178-181. doi:10.1212/01.wnl.0000194255.82542.6bFulk, G. D. (2005). Locomotor Training and Virtual Reality-based Balance Training for an Individual with Multiple Sclerosis. Journal of Neurologic Physical Therapy, 29(1), 34-42. doi:10.1097/01.npt.0000282260.59078.e4Lozano-QuilisJAAlbiol-PerezSGil-GomezHPalaciosGFardoumHMGil-GomezJAMashatASVirtual reality system for multiple sclerosis rehabilitation using KINECT2013International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth)May 5-8Venice, Italy366369Van Hedel, H. J., Wirz, M., & Dietz, V. (2005). Assessing walking ability in subjects with spinal cord injury: Validity and reliability of 3 walking tests. Archives of Physical Medicine and Rehabilitation, 86(2), 190-196. doi:10.1016/j.apmr.2004.02.010Podsiadlo, D., & Richardson, S. (1991). The Timed «Up & Go»: A Test of Basic Functional Mobility for Frail Elderly Persons. Journal of the American Geriatrics Society, 39(2), 142-148. doi:10.1111/j.1532-5415.1991.tb01616.xSteffen, T. M., Hacker, T. A., & Mollinger, L. (2002). Age- and Gender-Related Test Performance in Community-Dwelling Elderly People: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and Gait Speeds. Physical Therapy, 82(2), 128-137. doi:10.1093/ptj/82.2.128Gil-GomezJASEQ: Suitability Evaluation Questionnaire for Virtual Rehabilitation systems2013International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth)2013Venice, Italy33533

    Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture

    Get PDF
    Abstract Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo
    corecore