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Abstract

Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus
(FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and
sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following
subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral
variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either
clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in
CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau
(set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to
replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras
bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the
humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although
potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed
between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced
replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the
viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative
advantage and should provide the focus for future vaccine development.
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Introduction

Feline immunodeficiency virus (FIV) targets CD4+ helper T

cells by an initial high affinity interaction between the viral

envelope glycoprotein and CD134 (OX40) [1,2] and a subsequent

interaction with the chemokine receptor CXCR4 [3,4]. As

expression of CD134 is restricted to activated CD4+ (not CD8+)

T cells, FIV infection of the domestic cat results in an immune

dysfunction characterised by a progressive depletion of helper T

cells. The resulting AIDS-like immunodeficiency manifests with

chronic gingivitis and stomatitis, anorexia, cachexia, neurological

signs and an increased incidence of malignancy.

There are distinct differences in pathogenicity amongst FIV

strains. Infection with a cell culture-adapted strain of virus results

in an inapparent infection with low viral loads and stable CD4+ T

cell numbers [5]. In contrast, infection with a primary isolate of

virus, serially passaged in vivo during the acute phase of infection,

results in the development of a disease state characterised by a

high viral load, precipitous decline in CD4+ T cell numbers,

lymphoid depletion and susceptibility to opportunistic infections

[6]. The pathogenicity of different strains of FIV may be

influenced by both host and viral factors, for example variants

bearing mutations in the FIV orfA gene are defective for growth in

primary T cells [7–9] while the viral Vif protein permits evasion of

the antiviral activities of host APOBEC proteins [10].

The surface glycoprotein Env is a primary determinant of cell

tropism; in early infection the virus targets CD4+ helper T cells and

macrophages primarily, while in later infection tropism extends to

CD8+ T cells and B cells [11,12] and it would appear that early and

late isolates of virus may differ in the way they interact with the

primary receptor CD134 and their propensity for CD134-indepen-

dent infection [13,14]. The virus-receptor interaction may evolve

under the selective pressure of the humoral immune response; for

example, hypervariation in the V5 loop of Env associated with

escape from neutralising antibody alters the Env-CD134 interac-

tion, increasing sensitivity to antagonism by anti-CD134 antibody

while reducing sensitivity to inhibition by soluble CD134 [15].

Accordingly, selective pressure from the humoral immune response

may alter the cell tropism and pathogenicity of the viral variants that
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evolve. Such ‘‘late’’ viral variants that emerge in FIV infected cats

under the selective pressure of the humoral immune response may

mirror the emergence of CXCR4-dependent (X4) variants of HIV

with disease progression [16]. X4 variants emerge in approximately

50% of HIV-infected individuals, however, progression to AIDS

may also occur in the absence of X4 variants suggesting that there is

not a causal link between the presence of X4 variants and the

development of AIDS. While the emergence of viral variants with

the phenotype of ‘‘late’’ variants of FIV has been observed in vivo

[15], it is not known whether these variants are less pathogenic, or

whether they are transmitted poorly to naı̈ve animals, analogous to

the selective filtering of X4 variants of HIV following transmission

(reviewed in [17]).

Identifying the strains of virus that are transmitted between cats

is critical to the selection of strains for future formulations of FIV

vaccines. While a commercial FIV vaccine has been developed

and has demonstrated a degree of efficacy [18–22], the vaccine

failed to protect cats from challenge with the prototypic United

Kingdom subtype A strain, GL8 [23–27]. If GL8 is representative

of field strains of FIV, then the incorporation of antigens from

GL8-like viruses into the next generation of FIV vaccines would

seem prudent.

In previous studies, we followed experimental infection of cats

with a molecular clone of GL8 for a period of six years [5,28]. At

the end of the study, we observed the establishment of pools, or

‘‘swarms’’ of viral variants, each with distinct receptor usages and

sensitivities to neutralising antibodies [15,29]. Included within

these viral quasispecies, were viruses that were near identical to the

parent GL8 strain of virus [29]. As FIV is thought to be

transmitted between cats by fighting and biting, the entire pool of

viral variants could, potentially, be transmitted between cats,

circumventing barriers to transmission such as mucosal surfaces

[17]. In this study we set out to investigate what would happen to a

diverse GL8-derived inoculum following experimental transmis-

sion. Would diversity be maintained or would selected viral

variants dominate? Here we demonstrate that following transmis-

sion of a pool of viral variants, GL8-like viruses dominate and

appear to have a replicative advantage.

Materials and Methods

Ethics statement
This study was approved by the University of Glasgow

Institutional Animal Care and Use Committee (OLAW Assurance

A5181-01) ‘‘The control of feline retroviral infection in domestic

cats’’ and was conducted under licence from the UK Government

Home Office under the Animals (Scientific Procedures) Act 1986.

The use of recombinant viruses was approved by the Health and

Safety Executive under The Genetically Modified Organisms

(Contained Use) Regulations 2000.

Cells and viruses
MYA-1 [30], MCC-CD134 [1] and CLL-CD134 [13] cells

were cultured in RPMI 1640 medium, while HEK-293T were

maintained in Dulbecco’s modification of Eagle’s medium

(DMEM). Media for HEK-293T, MCC-CD134 and CLL-

CD134 were supplemented with 400 mg/ml G418. All media

were supplemented with 10% foetal bovine serum (FBS), 2 mM

glutamine, 0.11 mg/ml sodium pyruvate 100 IU/ml penicillin,

100 mg/ml streptomycin (complete medium). The medium for

MYA-1 cells was supplemented with conditioned medium from a

murine cell line (L2.3) transfected with a human IL-2 expression

construct (M. Hattori, University of Tokyo, Japan) at a final

concentration equivalent to 100 U/ml of recombinant human

IL-2, and 50 mM 2-mercaptoethanol. All media and supplements

were obtained from Invitrogen Life Technologies, Paisley, UK.

Figure 1. Immunological alterations following FIV infection.
Cats in Group 1 were challenged with clonal GL8 (variant B32), cats in
group 2 were challenged with the reconstituted quasispecies challenge
(B14, B19, B28, B30, B31 and B32) and control cats remained
unchallenged. Percentages of lymphocytes expressing (A) CD4 and (B)
CD8 were measured by flow cytometry and are shown as group means
+/2 SE. (C) CD4:CD8 ratios were calculated from the percentage of CD4
and CD8 positive lymphocytes and are displayed as group means +/2
SE. p-values for statistically significant differences between infected and
control groups are shown (Student’s t-test).
doi:10.1371/journal.pone.0054871.g001

FIV Quasispecies
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Experimental design
Six years post-infection of cat A613 with a molecular clone of

the GL8 strain of FIV, a viral quasispecies had evolved

comprising diverse variants with distinct biological properties,

including resistance to virus neutralising antibody and discernible

differences in the nature of the virus-receptor interaction [5,29].

In this study, we compared transmission of a reconstituted

quasispecies with transmission of the cloned virus. In order to

prepare a defined ‘‘quasispecies’’, env genes from five distinct

variants (B14, B19, B28, B30, and B31 [15]) and a single variant

identical to the parent GL8 clone (B32) were amplified and sub-

cloned into the GL8(MYA) molecular clone. Our aim was to

reconstitute a quasispecies representative of that isolated from cat

613 at post-mortem and comprising variants with distinct

sensitivities to either neutralising antibody, soluble CD134

(sCD134) or anti-CD134 antibody (7D6), and which had shown

variations in the way they utilised CD134 as a receptor [13,14]

(summarised in Fig. S1 and shown in detail in Figure S2).

Challenge viruses were prepared by transfecting the six

variants into HEK-293T cells and recovering into primary IL2-

dependent CD4+ T cells (MYA-1 cells). MYA-1 cells express

CD4, CXCR4 and CD134 at similar levels to mitogen-

stimulated helper T cells and support the replication of all

strains of FIV tested to date without applying a selective pressure

to viruses cultured therein. Stocks of each virus were 0.45 mm-

filtered and frozen at 280uC. Viral titres were quantified by

serial dilution upon uninfected MYA-1 cells and calculated using

the Kärber formula, monitoring the cells visually for cytopathi-

city and for the production of FIV p24 by enzyme-linked

immunosorbent assay (ELISA, PetCheck FIV antigen ELISA,

IDEXX Corp., Portland, Maine, USA). Reverse transcriptase

activity within each viral stock was estimated by non-isotopic RT

assay (Cavidi AB, Uppsala, Sweden).

Previous studies have demonstrated that four animals per group

would be sufficient to distinguish differences in the biological

phenotypes of the challenge viruses [5]. Accordingly, two groups

of four age-matched specific pathogen free animals were infected

with 10,000 TCID50 of either the parent molecular clone of GL8-

B32 (animals 821, 822, 823 and 824) or a pool containing equal

TCID50 of six variants bearing the env genes of B14, B19, B28,

B30, B31 and B32 to a final combined challenge dose of 10,000

TCID50 (animals 825, 826, 827 and 828). Thus, Group 1 received

10,000 TCID50 of clonal virus, while Group 2 received 10,000

TCID50 of the quasispecies (Figure S3). Animals were infected

intra-peritoneally and blood samples collected at three-weekly

intervals. EDTA-anti-coagulated blood samples were processed for

flow cytometry while plasma was stored for immunoblotting.

White blood cells were prepared using whole blood lysis and

frozen immediately at 280uC for subsequent analysis of proviral

loads. At post-mortem, 21 weeks post-infection, lymphoid tissues

Figure 2. Proviral loads following FIV infection. Mean proviral loads (+/2SE) for groups 1 (clonal challenge) and 2 (quasispecies challenge)
were estimated by real-time PCR using primers derived from either (A) gag (all clones shared a common gagpol sequence) or (B) a conserved
sequence within the V5 region of env. (C) The mean proviral loads (+/2SE) for individual variants B14, B19, B28 and B30 in study group 2 were
estimated using real-time PCR targeting unique determinants within the V5 region of env. All estimates of proviral load were performed in triplicate.
(D) V5 env sequences amplified at 21 weeks post-infection from cats 825, 826, 827 and 828 infected with the reconstituted quasispecies. The region
spanning nucleotides 1640 to 1694 of the GL8 env open reading frame is shown, the predicted amino acid translation of this region from the parent
GL8 strain is shown above the parent GL8 sequence. The number of clones isolated with the corresponding V5 sequence is listed; no clones bore the
B14 sequence, consistent with the poor replication of B14 in vivo.
doi:10.1371/journal.pone.0054871.g002
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were collected and processed, the separated cells were then cryo-

preserved for subsequent ELISpot analyses.

Flow cytometry
Anti-feline CD4-FITC (vpg34), anti-feline CD8ab-PE (vpg9) and

anti-human CD14-FITC (TÜK4) were obtained from AbD Serotec

Ltd., Oxford, U.K. EDTA anti-coagulated blood was processed for

flow cytometric analyses by whole blood lysis as described previously

[31]. Samples were analysed on a Beckman Coulter EPICS MCS-

XL flow cytometer, 10,000 events being collected for each sample in

LIST mode. Data were processed using EXPO 32 ADC Analysis

software (Advanced Cytometry Systems).

Immunoblotting
Pooled supernatants from FIV GL8-infected MYA-1 cells were

filtered at 0.45 mm and virus pelleted by ultracentrifugation at

28,000 rpm in an SW28 rotor on a Beckman L8-70 ultracen-

trifuge. The pelleted virus was resuspended in reducing Laemmli

sample buffer [32] and separated on 4–15% polyacrylamide gels.

Separated proteins were transferred to nitrocellulose by electro-

blotting (iBlotTM, InVitrogen Life Technologies, Paisley, UK)

and viral antigens were detected using either cat plasma samples

or control pooled polyclonal cat plasmas from either uninfected

or FIV GL8-infected cats. Bound antibodies were detected using

biotinylated goat anti-cat IgG (Vector Laboratories Ltd.,

Peterborough, UK), while bound conjugate was revealed using

the Vectastain ABC kit and 5-bromo-4-chloro-3-indolyl phos-

phate/nitroblue tetrazolium substrate (Vector Laboratories Ltd.).

Virus neutralising antibody (VNA) assays
FIV env gene expression constructs have been described

previously [1,13,14]. 5 mg of each VR1012-env construct and

7.5 mg of pNL4-3-Luc-E2R2 were co-transfected into HEK-293T

cells using SuperFect activated dendrimer (QIAgen, Crawley, UK)

as per manufacturer’s instructions. The nomenclature ‘‘HIV(FIV)’’

denotes an FIV Env protein on an HIV particle. Culture

supernatants were collected at 72 hours post-transfection, filtered

at 0.45 mm and frozen at –80uC until required. Target cell lines

were seeded at 56104 cells per well of a CulturPlateTM-96 assay

plate (Perkin Elmer, Life and Analytical Sciences, Beaconsfield,

UK) and used immediately. The cells were then infected with

50 ml of HIV (FIV) luciferase pseudotypes, cultured for 72 hours

and then luciferase activity quantified by the addition of 100 ml of

Steadylite HTSTM (Perkin Elmer) luciferase substrate prior to

measurement by single photon counting on a MicroBeta TriLux

luminometer (Perkin Elmer).

Plasmas were diluted 5-fold in MYA-1 culture medium and

then 25 ml of each dilution (in triplicate) was incubated with 25 ml

Figure 3. Serological response to FIV infection. Plasmas were collected from cats in group 1 (822, 823, 824) and group 2 (825, 826, 827 and 828)
at 0, 3, 6, 10, 12, 15, 18 and 21 weeks post-infection and were screened by immunoblotting against purified GL8 virus. Also shown are positive (+) and
negative (2) control plasma samples. Bands corresponding to matrix (MA) and capsid (CA) proteins, and the envelope glycoprotein (Env) are
indicated by arrows.
doi:10.1371/journal.pone.0054871.g003
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of HIV(FIV) luciferase pseudotype (containing ,50 pg of reverse

transcriptase (RT) activity), incubated for one hour at 37uC and

then added to 50 ml (56104 cells) of MYA-1 cells per well of a

CulturPlateTM-96 assay plate (Perkin Elmer). The cells were then

cultured for 72 hours and luciferase activity quantified by the

addition of 100 ml of Steadylite HTSTM (Perkin Elmer) luciferase

substrate and measurement on a MicroBeta TriLux luminometer.

Percent neutralisation was calculated by comparing the mean

luciferase counts at each plasma dilution with the mean luciferase

counts for the no plasma control.

Inhibition of viral entry
16105 MYA-1, CLL-CD134 or MCC-CD134 cells were

incubated with AMD3100 in complete medium in triplicate wells

of 96-well culture-treated luciferase assay plates (CulturPlateTM

96) for 30 minutes at 37uC. HIV(FIV) pseudotypes were then

added and the plate returned to the 37uC incubator. Cultures were

maintained for 72 hours post-infection at which point 100 ml of

Steadylite HTSTM (Perkin Elmer) luciferase substrate was added

and luminescence measured by single photon counting on a

MicroBeta luminometer (Perkin Elmer). Percent infection was

calculated by comparing the mean (n = 3) luciferase activity of

each antagonist concentration against the mean (n = 3) luciferase

activity of untreated cells (100% infection).

Quantification of proviral loads by real time PCR
Primers and probes were purchased from Eurofins-MWG.

DNA was prepared from peripheral blood mononuclear cells

(PBMC) and stored in Tris-EDTA buffer prior to analysis. For

total viral loads, a gag PCR was utilized [33] whereby 400 ng of

Figure 4. Absence of neutralising antibodies in early FIV infection – Group 1. Sequential plasmas from group 1 (822, 823 and 824) animals
collected at 0,3,6,10,12,15,18 and 21 weeks post-infection were diluted 1:100 and assayed for the ability to neutralise HIV(FIV) pseudotypes bearing
the B32 Env. Also shown are pooled uninfected (2ve) plasma and post-mortem plasma from A613 (+ve). Neutralisation data are shown in comparison
with total proviral loads for each cat as estimated using either gag or env–specific real-time PCR. All estimates of proviral load and luciferase activity
are displayed as mean (n = 3) +/2 SE.
doi:10.1371/journal.pone.0054871.g004

FIV Quasispecies
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each sample was added to Taqman mastermix (Applied Biosys-

tems) containing 20 pmol of forward and reverse primers

FIV1360F (59-GCA GAA GCA AGA TTT GCA CCA-39) and

FIV1437R (59-TAT GGC GGC CAA TTT TCC T-39) and

10pmol probe FIV1416P FAM-TGC CTC AAG ATA CCA

TGC TCT ACA CTG CA-TAMRA. Single viral variant analysis

Figure 5. Absence of neutralising antibodies in early FIV infection – Group 2. Sequential plasmas from group 2 (825, 826, 827 and 828)
animals collected at 0,3,6,10,12,15,18 and 21 weeks post-infection were diluted 1:100 and assayed for the ability to neutralise HIV(FIV) pseudotypes
bearing the B14, B19, B28, B30, B31 and B32 Envs. Also shown are pooled uninfected (2ve) plasma and post-mortem plasma from A613 (+ve).
Neutralisation data are shown in comparison with total proviral loads for each cat as estimated using either gag or env–specific real-time PCR, or the
variant (B14, B19, B28 and B30)-specific V5-targeted real-time PCR. All estimates of proviral load and luciferase activity are displayed as mean (n = 3) +/
2 SE.
doi:10.1371/journal.pone.0054871.g005
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PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e54871



used a common reverse primer V5R1 (59- GCT ACG GGG TTA

TAC CAA TTT C-39) and probe V5probe1 (59- FAM-ATA GTG

TTA AAA TGG CAT GTC CTA AAA ATC AAG GCA TCT-

TAMRA-39), in conjunction with a unique forward primer B14F

(59-GTA CAA ATA GTA GTA GTA CAA ACA GTA GT-39),

B19F (59-ATA TGA ATT GTA ATT GTA CAA ATA GCA

Figure 6. Cellular immune response in FIV infected cats. Cells from popliteal (PLN) or mesenteric (MLN) lymph nodes, peripheral blood (PBMC)
or spleen were screened for interferon-c production by ELISpot using AT2-inactivated virus as the source of viral antigen (each point represents the
mean +/2SE of triplicate wells).
doi:10.1371/journal.pone.0054871.g006

FIV Quasispecies
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GTA CA-39), B28F (59-CAA ATA GTA GTA GTA CAA ATC

GGC AAA-39) or B30F (59-GTA CAA ATA GTA GTA GTA

CAA ATA GTA CA-39). It was not possible to generate a unique

V5 forward primer/probe combination for either clone B31 or the

parent clone GL8 (B32) that could distinguish B31 or GL8 from

the quasispecies as the V5 sequences of the viral variants were

derived from GL8. A primer and probe set targeting V5 but which

detected all variants with equal efficiency consisted of the primers

G8V57829F (59-GCA TTT CAA TAT GAC AAA AGC T-39)

and V5R1 and probe 59-FAM-ATA GTG TTA AAA TGG CAT

GTC CTA AAA ATC AAG GCA TCT-TAMRA-39. Control

amplifications used primers and probes adapted from ref. [33] and

targeting 18 s rDNA; rDNA 343F (59-CCA TTC GAA CGT

CTG CCC TA-39), rDNA 409R (52TCA CCC GTG GTC ACC

ATG-39) and probe rDNA 370P (59-FAM-CGA TGG TAG TCG

CCG TGC CTA-TAMRA-39). All estimations of viral load were

adjusted to control for efficiency of 18 s rDNA amplification.

Prior to the analyses, the specificities and sensitivities of the

variant-specific real-time PCRs were confirmed by comparing the

ability of each primer and probe set to detect i) the homologous

molecular clone in a background of cellular DNA and ii) the

homologous molecular clone in a background of cellular DNA that

had been spiked with an excess of the remaining five molecular

clones. By comparing the performance of the assays under these

conditions we were able to conclude that the B28 primer and

probe set could detect 62 copies of B28 proviral DNA in the

presence of 100,000-fold excess of the other five proviruses, at

which time cross-talk between templates could be detected. The

B30 primer and probe could also detect 62 copies of B30 but only

remained specific in the presence of a 1000-fold excess of the other

variants. The B14 primer and probe detected 62 copies with a

reduced specificity of a 100-fold while the B19 primer and probe

set proved the weakest of the four, with a sensitivity of 618 copies

and a specificity of only 20-fold. While by no means optimal, the

four primer and probe sets displayed sufficient specificity and

sensitivity to facilitate a sound estimation of the composition of

viral variants in peripheral blood. However, in order to confirm

that the real-time PCR analyses were robust, we used limiting

dilution PCR to amplify the V5 region of the env gene from PBMC

DNA prepared from post-mortem blood samples from cats 825,

826, 827 and 828, the products were cloned and the nucleic acid

sequences of approximately 50 clones from each animal were

Figure 7. Epitope mapping of the cellular immune response in FIV infected. T cell epitopes were mapped using spleen cells from
822,823,824,825,826,827 and 828. Analyses used 17 pools of 10 x 15-mer peptides, each overlapping by 10 amino acids (pools P1-P17).
Representative ELISpots for spleen cells from animal 822 against peptide pools P6 to p10) are included. All animals were screened with 17 peptide
pools and where strong responses were confirmed (*), individual epitopes were then identified by splitting pools into their component peptides and
repeating the analyses.
doi:10.1371/journal.pone.0054871.g007
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determined by capillary sequencing on an ABI3730xl DNA

analyzer (Applied Biosystems) using BigDyeH Terminator v1.1

cycle sequencing chemistry (Applied Biosystems).

Quantification of cellular immunity by ELISpot
Lymph nodes were removed at post mortem and placed in ice-

cold culture medium. Tissues were disrupted using crossed scalpels

and cells separated by pipetting, washed by centrifugation and

then purified by centrifugation through Ficoll-PaqueTM (GE

Healthcare UL Ltd, Little Chalfont, UK) separation medium.

Lymphocytes were harvested from the interface, washed by

centrifugation and stored in the vapour phase of liquid nitrogen

in cryoprotectant consisting of culture medium supplemented with

20% FBS and 10% DMSO. Prior to ELISpot analysis, cryovials of

cells were thawed rapidly at 37uC and washed in prewarmed

culture medium. IFN-c producing cells were enumerated using

commercial IFN-c ELISpot kits (R&D Systems, Abingdon,

Oxford, UK) as per the manufacturer’s protocol. 56105 cells

Figure 8. (A) Location of T cell epitopes identified by ELISpot on schematic representations of FIV gp120 and gp41. Each circle
represents a single amino acid, regions constituting T cell epitopes are marked by a red line with responding cat number alongside and peptide
names in parenthesis. Predicted sites for N-linked glycosylation are in blue. (B) Amino acid sequences of T cell epitopes covered by the ELISpot
peptides and the animals that responded.
doi:10.1371/journal.pone.0054871.g008

Table 1. Sensitivity of viral variants to receptor antagonists.

Viral variant

Target
cell B14 B19 B28 B30 B31 B32

anti-
CD1341

MYA-1 0.11 0.34 0.16 0.26 .50 .50

sFc-
CD134

MYA-1 25 1.1 18 1.6 1.4 0.7

MCC-
CD134

40 1.8 20 1.5 1.6 1.3

AMD3100 MYA-1 0.0045 0.06 0.03 0.02 0.035 0.025

CLL-
CD134

0.14 0.4 1.0 0.5 0.5 0.5

Inhibitory concentration 50% (IC50) in mg/ml.
doi:10.1371/journal.pone.0054871.t001
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were added to each well and incubated with 0.1, 1.0 or 10 mg (total

protein concentration) of sucrose gradient-purified FIV GL8 that

had been treated overnight with AldrithiolTM-2 (AT-2, Sigma,

Poole, UK). Control wells were incubated with medium alone or

medium supplemented with 5 mg/ml Concanavalin A (Con A).

Spot-forming cells were enumerated on an AID ViruSpot Reader,

CADAMA Medical Ltd., UK. Subsequent analyses used pools of

overlapping peptides derived from the predicted sequence of GL8

Env (15-mers overlapping by 10 amino acids and spanning the

entire leader (L), surface (SU) and transmembrane (TM) domains)

and which had been dissolved initially in HPLC-grade DMSO

(Sigma-Aldrich, Poole, UK) and diluted in phosphate buffered

saline pH 7.4 prior to use. All peptides were from Alta Biosciences

(Birmingham, UK).

Results

Comparison of viral pathogenicity in vivo
The replication of cloned GL8 (Group 1) in vivo was compared

with the reconstituted quasispecies (Group 2). While, infection of

both groups led to a significant reduction in the CD4:CD8 ratio

compared with age-matched controls (Fig. 1), there was no

significant difference in CD4:CD8 ratios between the two groups

at each of the time points that were compared. The reduced

CD4:CD8 ratios derived primarily from a reduction in CD4+ T

lymphocytes coupled with a significant increase in CD8+ T

lymphocytes as described previously [31]. This expansion of CD8+
lymphocytes reached a maximum by 12 weeks post-infection and

was sustained in group 2 animals but was transient in group 1

animals, falling to the control level by 21 weeks post-infection. By

21 weeks post-infection, CD4+ lymphocytes were depleted in both

study groups, but most markedly in group 1. Thus while infection

with the clonal virus appeared to induce a transient increase in

CD8+ lymphocytes and significant reduction in CD4+ lympho-

cytes, infection with the mixture of viral variants induced a

sustained increase in CD8+ lymphocytes and a more modest

reduction in CD4+ lymphocytes.

Next, we compared the proviral loads in peripheral blood

mononuclear cells (PBMC) between the two groups. As both

groups of cats were infected with viruses derived from the GL8

molecular clone, primers and probes for real time PCR were

designed that targeted the common gag sequence shared by all

viruses. When the 21-week area under the curve was compared no

statistically significant differences were found between groups 1

and 2, both groups achieving peak proviral loads approaching 105

proviral copies/106 cells. However, in general, the group 1 cats

infected with the homogeneous GL8 preparation achieved higher

absolute viral loads than group 2 infected with the quasispecies

(Fig. 2A), detectable by three weeks post-infection and peaking by

10 weeks post-infection. The sole exception was three weeks post-

infection where the viral loads in group 2 were higher than those

in group 1. Overall, even though the inocula were adjusted to

ensure that the animals were challenged with matched TCID50s,

the Group 2 inoculum with increased env diversity appeared to

replicate more poorly in vivo.

To confirm the validity of these findings, DNA was extracted

from a fresh set of PBMC samples and the analyses repeated using

primers and probes derived from a conserved stretch of the env.

This completely independent analysis (Fig. 2B) recapitulated the

findings with the gag primers and probe, demonstrating higher

proviral loads in the group 1 cats with the single exception of week

3, at which time point the situation was reversed. In conjunction

with the more pronounced reduction in CD4+ T lymphocytes, the

higher viral loads detected in the group 1 animals is consistent with

a higher viral load being linked to a more profound depletion of

CD4+ lymphocytes.

Next, we asked whether the lower viral load in the group 2

animals resulted from a defective ability to replicate per se, or

whether individual variants within the group 2 mixture were

affected more markedly than others. Despite the high degree of

sequence similarity amongst the six molecular clones comprising

the quasispecies, there was sufficient variation in the V5 region to

permit an estimation of the proviral loads of four of the individual

clones by real-time PCR using selective probe and primer sets

(Fig. 2C). These primers and probes did not detect the GL8-like

clones B31 and B32 (as the variant V5s were derived largely from

sequence repetition, it was not possible to detect B31 and B32

specifically in the presence of a background of B14, B19, B28 and

B30). Statistically significant differences were found in the 21-week

area under the curve among the four clones we were able to

discriminate (ANOVA p,0.05). B19 achieved a viral load of ,104

copies/106 cells by three weeks post infection and this level was

maintained throughout the course of the study. B30 also achieved

a load of 104 copies/106 cells although not until 10 weeks post-

infection, suggesting replication may have been slightly retarded.

The most significant differences were the lower loads achieved by

B28 and, more strikingly, B14; both clones achieved substantially

lower viral loads (,103 copies/106 cells for B14) in spite of

matched TCID50 of all six viruses having been included in the

inoculum. Real time analyses of the number of viral genomes

within each of the individual virus stocks used to prepare the

challenge inocula revealed that each of the individual viral stocks

contributed ,109 viral genomes (range 1.3 to 6.06109) to the final

challenge stock following adjustment for in vitro titre. Thus the

marked disparity in viral loads observed in vivo could not be

accounted for by disparities in the number of viral genomes in the

challenge stocks. Specifically, the B14 stock contributed 2.26109

genomes to the challenge stock while B32 contributed 1.36109

genomes. The data suggest that the challenge stock for the group 2

cats had broadly similar numbers of genomes from each individual

virus and that the lower loads for B14 detected in vivo reflected a

failure of this viral variant to thrive in vivo.

Given the sensitivity and specificity of the real-time analyses (see

Methods), we can conclude that estimates of B28 and B30 copy

number are likely to be accurate; the total viral load in the group 2

cats (Fig. 2B) did not exceed ,104 copies and thus there would

have been insufficient competing templates to interfere with the

quantification of these variants. However, given that lentiviruses

acquire mutations with successive cycles of replication and that

such mutations may impact upon the accuracy of the real-time

PCR analyses, we performed a second analysis in which the V5

region of env was amplified directly from blood samples collected at

post mortem from the four animals infected with the quasispecies

(825, 826, 827, 828). The V5 amplicons were then cloned and

their nucleic acid sequences determined (Fig. 2D). The majority of

the amplicons sequenced from each of the four animals had V5

sequences identical to that of variants B31 and B32 (87% of total,

with two additional closely related variants, GL8v1 and GL8v2,

identified in animal 827), suggesting that by 21 weeks post-

infection the GL8-like variants were dominant in peripheral blood.

Variants B19 and B30 were detected at a lower frequency (6.8%

and 3.9%). Real-time PCR analysis had suggested that variants

B14 and B28 were present at significantly lower levels than the

other viral variants and this was borne out by the sequencing

analysis in that we were unable to detect B14 by direct sequencing

while B28-like variants were detected on only three occasions. The

data are consistent with the selective replication of GL8-like

variants during the early phase of infection.
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Role of neutralising antibodies in suppressing viral
replication

Pressure from the humoral immune response in the form of

virus neutralising antibody selects for the emergence of viral

variants bearing mutations in V5 that facilitate escape from

neutralisation and which may alter the nature the virus-receptor

interaction [15]. It is possible therefore that the replication of the

B14 and B28 variants was suppressed by the humoral immune

response although given that replication of these variants was

lower as early as 3 weeks post-infection this would seem unlikely.

To determine whether antibody-mediated neutralisation played a

role in the reduced replicative capacity of B14 and B28, we first

established whether the cats had mounted an anti-Env antibody

response within the 21 week study period. Sequential samples of

plasma from the infected animals were used to probe immuno-

blots prepared from pelleted IL2-dependent T cell-grown FIV

GL8 (Fig. 3). Sero-reactivity against the viral capsid protein p24

(CA) could be detected as early as three weeks post-infection

followed by a response against the matrix protein p17 (MA) at

6 weeks post-infection. Consistent with previous findings, the

humoral response to Env developed more slowly and in most cats

was not detectable until 10 to 12 weeks post-infection. At the

time of post-mortem, 21 weeks post-infection, all animals had

mounted a serological response against viral proteins, including

antibodies against Env.

Having confirmed the presence of Env-specific antibodies we

next asked whether virus neutralising antibodies contributed to the

humoral response and whether the strength of the neutralising

antibody response correlated with changes in the viral loads of

individual animals. Firstly, we examined neutralisation of the

clonal virus (B32) by homologous antibody from the Group 1

animals. While the PM plasma from cat 613 (+ve control)

neutralised homologous virus effectively, reducing infectivity by

over 100-fold (Fig. 4), no virus neutralizing antibodies were

detected in the sequential plasmas from animals 822, 823 and 824

(infected with the clonal inoculum), even though there was clear

evidence of a downward trend in viral load in cats 823 and 824

between 12 and 21 weeks post-infection. While all neutralisation

assays were performed with a level of input virus that displayed

marked neutralisation by plasma from cat 613, we considered the

possibility that very weak neutralising antibodies may be present in

the sequential plasmas and that these were masked by the level of

input virus. Accordingly, the neutralisation assays were repeated

with 10-fold and 100-fold reductions in the level of input viral

pseudotype, however, no neutralising activity was revealed in the

plasma samples irrespective of the level of input virus (not shown),

confirming that neutralising antibodies were not present in the

sequential samples.

We next investigated the neutralisation of the individual viral

variants in the group 2 cats (Fig. 5). As each animal had been

infected with a pool of six viral variants, sequential plasma samples

from each of the four animals were screened for neutralising

activity against HIV(FIV) pseudotypes bearing Envs from each of

the viral variants. Again, no neutralising activity could be detected

in any of the plasmas, while the positive control plasma from cat

613 neutralised the GL8-like variants B31 and B32 effectively.

Variants B14 and B28, which grew poorly in vivo, resisted

neutralisation by the sequential plasmas from all four animals.

Again, reducing the level of input virus in the assay did not reveal

the presence of weak neutralising antibody activity. As no

correlation was noted between proviral load and neutralising

antibody activity, the data do not support the involvement of

neutralising antibody in restricting the early growth of variants

such as B14 and B28.

Cellular response to viral infection
The cellular response to HIV infection develops during the

acute phase of viral replication and is thought to contribute

significantly to the reduction in viral load [34,35]. Moreover,

HIV-1 specific CD8+ T cells have been detected prior to the

detection of a humoral response [34–37]. The acute phase of

FIV infection is accompanied by the rapid expansion of a CD8+
lymphocyte population that is thought to represent an activated

T cell population responding to virus replication [31,38,39]. Both

Group 1 and Group 2 cats displayed such an expanded

population (Fig. 1) indicating that a cellular immune response

may have been induced in response to viral replication. Although

our understanding of cellular immunity in the cat is limited,

reagents have now been developed with which interferon-c
(IFNc) ELISpot assays may be performed [40,41]. We therefore

examined lymphoid tissues (popliteal and mesenteric lymph

nodes, and spleen) and peripheral blood mononuclear cells

collected at post mortem for evidence of a cellular immune

response using AldrithiolTM-2 (AT2)-inactivated whole GL8 virus

as the source of viral antigen. Responses varied between cats and

between tissues (Fig. 6). Amongst the cats infected with the clonal

virus preparation (group 1), a strong response was detected in the

PBMC of cat 822, while responses were not detected in either

popliteal or mesenteric lymph node samples and a weak response

was observed in spleen. In contrast, responses were detected in

the spleen, blood and popliteal lymph nodes of cats 823 and 824.

IFN-c-producing cells were detected in the spleens and

PBMCs of animals 825, 826, 827 and 828 challenged with the

quasispecies (group 2), but were less evident in the mesenteric

and popliteal lymph nodes, with the notable exception of 826 in

which marked virus-specific responses were evident in not only

spleen, but also both PBMC and mesenteric lymph node. It is

notable that 826 displayed very low viral loads for individual

variants B14 and B28 perhaps suggesting an involvement of the

cellular immune response in suppressing viral replication in this

animal.

Given the robust cellular responses detected in spleen cells from

the infected cats, we attempted to map the determinants in Env

recognised by the responding cells. As all animals were infected

with viruses that were identical in all genes except env, we reasoned

that any specificity in the cellular response for individual viral

variants would have to target Env. Accordingly, spleen cells from

animals in groups 1 and 2 (Fig. 7) were screened against 17 pools

of 10 overlapping 15-mer peptides representing the entire protein

encoded by the env gene. Positive pools were identified and the

analyses repeated using each of the individual peptides comprising

the positive pool. Cellular responses to the pooled peptides were

generally stronger than to inactivated virus as would be expected

due to enrichment of individual peptides. Using this strategy we

established that among the group 1 animals, pools P8 and P9 were

recognised by 822, pools P12 and P15 by 823 while pool P14 alone

elicited a response from 824 (Fig. 7). In contrast, among the group

2 animals, P9 stimulated a response from 825, three pools P2, P10

and P14 were recognised by 826, pools P8 and P9 were targeted

by 827, while 828 responded to a single pool, P15 (Fig. 7). The

data are consistent with the early cellular response targeting a

limited number of epitopes in Env.

Resolution of the pools revealed either individual peptides or

groups of peptides were responsible for driving the production of

IFN-c; for example, the response of 823 (group 1) to pool P12

could be mapped to peptide J3 while the epitope(s) in pool P9

recognised by 822 (group 1) and 827 (group 2) spanned peptides

H2 to H5. Superimposing the amino acid sequences of the

peptides recognised upon a schematic representation of FIV gp120
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and gp41 [32] (Fig. 8) revealed gp120 epitopes at the leader-

surface glycoprotein (L-SU) junction (B4-5), in the V3 loop (G2-5),

between V3 and V4 (H2-5) and C-terminal to V5 (J5) while gp41

epitopes mapped to the a-helical region of the extracellular

domain (K11) and a large epitope spanning the principle

immunodominant domain (PID) [33] and V7 (L9-10) recognised

by both 823 (group 1) and 828 (group 2). Three of the Env

epitopes were recognised by cells from two animals while a single

epitope elicited responses from the cells of three animals,

suggesting that these epitopes may be immunodominant. Howev-

er, we could find no correlation between the location of T cell

epitopes and the amino acid substitutions unique to each variant.

Additional ELISpot analyses performed using V5 peptides

representative of each of the six viral variants revealed no

evidence to suggest that the highly variable V5 loop encompassed

a T cell epitope (not shown). The data suggest that while robust T

cell responses are induced during the early phase of FIV GL8

infection and that they may contribute to the control of viral

replication, they are unlikely to account for the selective failure of

viral variants such as B14 and B28 to propagate following

experimental transmission.

Sensitivity of the viral variants to receptor antagonists
Of the six variants constituting the quasispecies, B14 achieved

the lowest viral load in vivo. As a reduced viral load was evident as

early as 3 weeks post-infection, it is unlikely that an adaptive

immune response was responsible for the poor replication of B14,

more likely would be either an increased sensitivity to an innate

control mechanism or a reduction in the efficiency of the process

of viral entry and spread. Previously, we observed that variants

B14 and B28 displayed an increased resistance to inhibition by

soluble CD134 coupled with an enhanced sensitivity to inhibition

by anti-CD134 antibody ([15]), indicative of alterations in the

virus-receptor interaction. For B14, modulation of the virus-

CD134 interaction was localised to the acquisition of mutations in

the V5 loop, apparently driven by escape from virus neutralising

antibodies [15]. Thus the two viral variants that achieved the

lowest viral loads in vivo also displayed an altered interaction with

the primary receptor CD134. We therefore extended these studies

to the interaction between the virus and its co-receptor CXCR4.

HIV(FIV) pseudotypes bearing Envs from GL8 or the five variants

were used to infect either MYA-1 cells (low CXCR4) or CLL-

CD134 (high CXCR4) in the presence of increasing concentra-

tions of the CXCR4 antagonist AMD3100 and the 50% inhibitory

concentration (IC50) estimated (Table 1). Infection with all six

variants was inhibited by AMD3100, consistent with obligate

usage of CXCR4 for entry by FIV. Lower concentrations of

AMD3100 were required to inhibit infection of cells expressing

low levels of CXCR4 (MYA-1) than high levels of CXCR4 (CLL-

CD134). Only one viral variant (B14) showed an enhanced

sensitivity to antagonism by AMD3100, most markedly on MYA-1

cells where CXCR4 was limiting. Thus, in addition to a high

sensitivity to anti-CD134 antibody and a low sensitivity to soluble

CD134, B14 was more sensitive to the CXCR4 antagonist. In the

absence of evidence for selective humoral or cellular control of the

early replication of this viral variant in the infected host, a

deficiency in the process of viral entry and spread may account for

the reduced ability to infect cells in vitro and the poor replication in

vivo.

Discussion

CD134 (OX40) is the primary receptor for FIV [1]; however,

viruses differ in the way they interact with CD134 [13,14]

(reviewed in [42]). These differences in the virus-receptor

interaction appear to be predictive of sensitivity to antagonism

by anti-CD134 antibody and soluble CD134, suggesting that

viruses may differ in the specificity and affinity with which they

interact with CD134. Previously, we proposed that viruses may

evolve in vivo from a complex, high affinity CD134 interaction (the

predominant phenotype in early, acute infection) to a more simple,

low affinity interaction (more prominent in late, chronic infection).

Consistent with this hypothesis, we observed the evolution of the

receptor usage of the ‘‘early’’ isolate GL8 in vivo and the emergence

of variants with the characteristics of ‘‘late’’ isolates [15]. If it is

indeed the case that GL8-like variants dominate in early infection,

then variants with the ‘‘late’’ phenotype must either not be

transmitted, or fail to thrive following transmission.

In this study we have addressed the latter scenario, by infecting

cats with a reconstituted quasispecies of ‘‘early’’ and ‘‘late’’

variants, we observed the preferential replication of GL8-like

‘‘early’’ variants. The basis for the failure of ‘‘late’’ variants to

thrive following transmission did not appear to stem from

immunological control; we could find no evidence for humoral

control of viral replication during the 21 week study period.

Further, while potent Env-specific cellular immune responses were

detected and their specificities mapped, there was no correlation

between the epitopes targeted and the replication of individual

viral variants. However, viruses that failed to thrive following

transmission, such as B14 and B28, were more sensitive to

antagonism by anti-CD134 antibody, resisted inhibition by soluble

CD134, and in the case of B14, displayed an enhanced sensitivity

to CXCR4 antagonist. Each of these observations is consistent

with alterations in the nature of the virus-receptor interaction in

variants such as B14 and B28, for example a reduced affinity of the

B14 and B28 Envs for the viral receptors. Our data suggest that

these alterations place the ‘‘late’’ variants at a replicative

disadvantage in naı̈ve cats.

Previous data have suggested that the neutralising response to

the GL8 strain of FIV develops very slowly [28]. In this study, we

could find no evidence to suggest that virus neutralising antibodies

played a significant role in the control of the GL8 strain of FIV

during the first 21 weeks of infection. Potent neutralising responses

have been observed in chronically infected cats (reviewed in [28]),

however this response may be focussed to a limited number of

determinants on Env such as the V4 and V5 loops and escape

from neutralisation has been observed [15,43–47]. Using HIV(-

FIV) pseudotypes bearing the Env proteins from each of the viral

variants within the inoculum we established that the strains that

replicated weakly in vivo were not targeted selectively by

neutralising antibodies during the 21 week study period.

Replication of GL8 induced significant cellular immune

responses in both study groups by 21 weeks post-infection, the

epitopes recognised varying between animals, an observation that

would be consistent with the out-bred study group possessing

distinct MHC and T cell repertoires. Mapping the cellular

responses proved informative: strong responses were detected

against epitopes in the V3–V4 region, perhaps indicating that at

least some of the pressure for antigenic variation in these regions

may come from the cellular immune response. Conversely, no

epitopes were detected in V5, the region that is most variable in

vivo, consistent with previous studies suggesting that this region

evolves to escape the humoral response [15,45]. Although we were

able to fine-map the determinants in Env targeted by the early

cellular response, no consistent pattern emerged to suggest that

cells infected with variants that replicated poorly were targeted

more efficiently by the cellular response. Given the potency of the

cellular immune responses detected, it is likely that there is a
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cellular element to controlling FIV GL8 replication during the

acute phase of infection but that additional factors act upon

variants such as B14 to stem viral spread.

Our data suggest that the variants that emerged late in the

infection of cat A613 have a reduced ability to infect diverse cells

types and that this may stem from alterations in the way they interact

with the viral receptors CXCR4 and CD134. The anti-CD134

antibody 7D6 competes very poorly with Env for binding to CD134,

suggesting that the inhibitory effect may be allosteric in nature [48].

GL8-like viruses are relatively resistant to 7D6, perhaps suggesting a

higher affinity interaction for CD134 than B14-like variants. Thus

GL8-like viruses may simply dominate in early infection as they

infect the primary target cells more efficiently. Once an infection has

been established, the immunological activation associated with

infection exemplified by lymphoid hyperplasia [26,27], enhanced

pro-inflammatory cytokine production [49] and polyclonal B cell

activation [50] may result in up-regulation of receptor expression

and thus create an environment that is conducive to the emergence

of viral variants displaying a reduced requirement for high affinity

receptor interactions.

The observation that GL8-like and B14-like viruses differ in the

way they interact with the viral receptors CD134 and CXCR4 is

consistent with findings that have revealed that HIV-1 clade B

envelopes from early infection tend to harbour amino acid

signatures that favour efficient Env expression in infected cells,

enhancing Env incorporation into nascent virions and replication

to higher titres [51,52]. These signature sequences are lost during

chronic infection under selective pressure from the adaptive

immune response [51,52]. Ex vivo assays of primary HIV-1 isolates

revealed that fitness mapped to the env gene and was controlled

predominantly during the early stages of viral replication [53,54].

For example, some type C HIV-1 envs displayed reduced fitness in

comparison with those of type B isolates and this was associated

with weak cell surface binding, inefficient entry, and an increased

sensitivity to CCR5 antagonists and fusion inhibitors [55]. By

analogy to these studies, we could hypothesize that FIV variants

such as B14 and B28 have an altered affinity for the viral receptor

or co-receptor that reduces fitness, translating to a lower

replicative capacity.

B14-like viruses may represent the end-product of selection by

the cellular and humoral immune responses upon FIV GL8;

viruses that emerge in chronic infection but which would be

supplanted rapidly by GL8-like viruses following transmission.

Whether B14-like viruses are able to disseminate or replicate in

distinct cellular compartments remains to be established, target

populations may include B cells or CD8+ T cells, however reliable

systems for the derivation and maintenance of feline CD8+ T cell

and B cell lines are not currently available.

The choice of immunogen is an important consideration for the

design of novel FIV vaccines. The data gathered from this study

would favour immunogens based on strains such as the parent

GL8 virus since it is this type of virus that dominates in early

infection and is responsible for the majority of the proviral burden

during the acute phase. In targeting such viruses selectively, novel

vaccines may not induce sterilising immunity, however they would

be more likely to prevent the establishment of a high viral burden

associated with rapid disease progression. Whether immunogens

can be designed that target such variants of FIV and HIV

effectively, inducing broad and long-lasting immunity remains one

of the greatest challenges in AIDS research.

Supporting Information

Figure S1 Location of non-synonymous mutations on
the Envs from the variants of GL8. Variant B32 Env was

identical to the GL8414 molecular clone. Yellow circles represent

single amino acid changes, solid yellow block represents multiple

changes. Each Env is defined by i) sensitivity to neutralisation by

postmortem plasma from cat 613; ii) receptor usage (dependency

on cysteine rich domains (CRDs) 1 and 2 of CD134; iii) sensitivity

to inhibition by anti-CD134 antibody 7D6; and iv) sensitivity to

inhibition by soluble CD134.

(PDF)

Figure S2 Predicted amino acid sequence alignment of
the SU-TM region from clones B14, B19, B28, B30, B31,
B32 and the parent clone GL8 (414). The SU-TM encoding

region of each env was cloned into the GL8MYA molecular clones

using Mlu-I and Nde-I sites at the L-SU junction and RRE

respectively. Thus, in all recombinant viruses the L-SU cleavage

site is mutated from RRAR to RRVR.

(PDF)

Figure S3 Study design. Previously, three animals (A611,

A612 and A613) were infected with the GL8(414) molecular clone

of FIV and followed for 322 weeks [5]. At post-mortem, a viral

quasispecies was identified in the peripheral blood of cat A613.

Env genes representative of five viral variants (B14, B19, B28, B30,

B31) and the parent virus (B32) were cloned into the GL8

molecular clone and used to prepare i) a homogeneous

preparation of GL8 B32 or ii) a reconstituted quasispecies

comprising equal amounts of B14, B19, B28, B30, B31 and B32.

Two groups of four animals were infected with matched TCID50

of the two stocks and monitored for 21 weeks, at which time the

study was terminated and postmortem analyses performed. A821

died mid-study as a result of a condition unrelated to FIV

infection.

(PDF)
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