222 research outputs found

    Hippocampal Gene Expression Analysis Highlights Ly6a/Sca-1 as Candidate Gene for Previously Mapped Novelty Induced Behaviors in Mice

    Get PDF
    In this study, we show that the covariance between behavior and gene expression in the brain can help further unravel the determinants of neurobehavioral traits. Previously, a QTL for novelty induced motor activity levels was identified on murine chromosome 15 using consomic strains. With the goal of narrowing down the linked region and possibly identifying the gene underlying the quantitative trait, gene expression data from this F2-population was collected and used for expression QTL analysis. While genetic variation in these mice was limited to chromosome 15, eQTL analysis of gene expression showed strong cis-effects as well as trans-effects elsewhere in the genome. Using weighted gene co-expression network analysis, we were able to identify modules of co-expressed genes related to novelty induced motor activity levels. In eQTL analyses, the expression of Ly6a (a.k.a. Sca-1) was found to be cis-regulated by chromosome 15. Ly6a also surfaced in a group of genes resulting from the network analysis that was correlated with behavior. Behavioral analysis of Ly6a knock-out mice revealed reduced novelty induced motor activity levels when compared to wild type controls, confirming functional importance of Ly6a in this behavior, possibly through regulating other genes in a pathway. This study shows that gene expression profiling can be used to narrow down a previously identified behavioral QTL in mice, providing support for Ly6a as a candidate gene for functional involvement in novelty responsiveness

    Health and life insurance as an alternative to malpractice tort law

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tort law has legitimate social purposes of deterrence, punishment and compensation, but medical tort law does none of these well. Tort law could be counterproductive in medicine, encouraging costly defensive practices that harm some patients, restricting access to care in some settings and discouraging innovation.</p> <p>Discussion</p> <p>Patients might be better served by purchasing combined health and life insurance policies and waiving their right to pursue malpractice claims. The combined policy should encourage the insurer to profit by inexpensively delaying policyholders' deaths. A health and life insurer would attempt to minimize mortal risks to policyholders from any cause, including medical mistakes and could therefore pursue systematic quality improvement efforts. If policyholders trust the insurer to seek, develop and reward genuinely effective care; identify, deter and remediate poor care; and compensate survivors through the no-fault process of paying life insurance benefits, then tort law is largely redundant and the right to sue may be waived. If expensive defensive medicine can be avoided, that savings alone could pay for fairly large life insurance policies.</p> <p>Summary</p> <p>Insurers are maligned largely because of their logical response to incentives that are misaligned with the interests of patients and physicians in the United States. Patient, provider and insurer incentives could be realigned by combining health and life insurance, allowing the insurer to use its considerable information access and analytic power to improve patient care. This arrangement would address the social goals of malpractice torts, so that policyholders could rationally waive their right to sue.</p

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health

    Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity

    Get PDF
    Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers

    An Animal Model of Emotional Blunting in Schizophrenia

    Get PDF
    Schizophrenia is often associated with emotional blunting—the diminished ability to respond to emotionally salient stimuli—particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning) in rats by means of acute ketamine administration. We confirm, in a series of experiments comprised of cFos staining, behavioral analysis and neurochemical determinations, that ketamine interferes with the behavioral expression of fear and with normal fear processing in the amygdala and related brain regions. We further show that the atypical antipsychotic drug clozapine, but not the typical antipsychotic haloperidol nor an experimental glutamate receptor 2/3 agonist, inhibits ketamine's effects and retains normal fear processing in the amygdala at a neurochemical level, despite the observation that fear-related behavior is still inhibited due to ketamine administration. Our results suggest that the relative resistance of emotional blunting to drug treatment may be partially due to an inability of conventional therapies to target the multiple anatomical and functional brain systems involved in emotional processing. A conceptual model reconciling our findings in terms of neurochemistry and behavior is postulated and discussed

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
    corecore