1,134 research outputs found

    Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation

    Get PDF
    We have developed an innovative approach without the use of ion implantation to transfer a high-quality thin Si layer for the fabrication of silicon-on-insulator wafers. The technique uses a buried strained SiGe layer, a few nanometers in thickness, to provide H trapping centers. In conjunction with H plasma hydrogenation, lift-off of the top Si layer can be realized with cleavage occurring at the depth of the strained SiGe layer. This technique avoids irradiation damage within the top Si layer that typically results from ion implantation used to create H trapping regions in the conventional ion-cut method. We explain the strain-facilitated layer transfer as being due to preferential vacancy aggregation within the strained layer and subsequent trapping of hydrogen, which lead to cracking in a well controlled manner. © 2005 American Institute of Physics

    H-induced platelet and crack formation in hydrogenated epitaxial Si/Si <inf>0.98</inf>B <inf>0.02</inf>/Si structures

    Get PDF
    An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxial Si Si0.98 B0.02 Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98 B0.02 layer. For hydrogenated Si containing a 130 nm thick Si0.98 B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98 B0.02 layer to 3 nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation. © 2006 American Institute of Physics

    Manipulating the metal-to-insulator transition and magnetic properties in manganite thin films via epitaxial strain

    Get PDF
    Strain engineering of epitaxial transition metal oxide heterostructures offers an intriguing opportunity to control electronic structures by modifying the interplay between spin, charge, orbital, and lattice degrees of freedom. Here, we demonstrate that the electronic structure, magnetic and transport properties of La0.9Ba0.1MnO3 thin films can be effectively controlled by epitaxial strain. Spectroscopic studies and first-principles calculations reveal that the orbital occupancy in Mn eg orbitals can be switched from the d3z2-r2 orbital to the dx2-y2 orbital by varying the strain from compressive to tensile. The change of orbital occupancy associated with Mn 3d-O 2p hybridization leads to dramatic modulation of the magnetic and electronic properties of strained La0.9Ba0.1MnO3 thin films. Under moderate tensile strain, an emergent ferromagnetic insulating state with an enhanced ferromagnetic Curie temperature of 215 K is achieved. These findings not only deepen our understanding of electronic structures, magnetic and transport properties in the La0.9Ba0.1MnO3 system, but also demonstrate the use of epitaxial strain as an effective knob to tune the electronic structures and related physical properties for potential spintronic device applications

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    TBK1 Kinase Addiction in Lung Cancer Cells Is Mediated via Autophagy of Tax1bp1/Ndp52 and Non-Canonical NF-kappa B Signalling

    Get PDF
    K-Ras dependent non-small cell lung cancer (NSCLC) cells are 'addicted' to basal autophagy that reprograms cellular metabolism in a lysosomal-sensitive manner. Here we demonstrate that the xenophagy-associated kinase TBK1 drives basal autophagy, consistent with its known requirement in K-Ras-dependent NSCLC proliferation. Furthermore, basal autophagy in this context is characterised by sequestration of the xenophagy cargo receptor Ndp52 and its paralogue Tax1bp1, which we demonstrate here to be a bona fide cargo receptor. Autophagy of these cargo receptors promotes non-canonical NF-κB signalling. We propose that this TBK1-dependent mechanism for NF-κB signalling contributes to autophagy addiction in K-Ras driven NSCLC

    Observation of CR Anisotropy with ARGO-YBJ

    Get PDF
    The measurement of the anisotropies of cosmic ray arrival direction provides important informations on the propagation mechanisms and on the identification of their sources. In this paper we report the observation of anisotropy regions at different angular scales. In particular, the observation of a possible anisotropy on scales between \sim 10 ^{\circ} and \sim 30 ^{\circ} suggests the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, as well as potential contributions of nearby sources to the total flux of cosmic rays. Evidence of new weaker few-degree excesses throughout the sky region 195195^{\circ}\leq R.A. 315\leq 315^{\circ} is reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich, German

    Spondin-2 (SPON2), a More Prostate-Cancer-Specific Diagnostic Biomarker

    Get PDF
    BACKGROUND: Prostate-specific antigen (PSA) screening, although common, has recently been called into question. To find prostate cancer (PCa) diagnostic biomarkers that can make up for the defects of PSA, we compared the secretomes of several benign and PCa cell lines, selected candidate molecules, and then confirmed their clinical value. METHODOLOGY/PRINCIPAL FINDINGS: We first identified extracellular proteins by two-dimensional gel electrophoresis (2-DE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification. We then validated the secreted proteins on a cellular level, and finally determined whether they could be used as PCa diagnostic biomarkers using prostate tissue and serum specimens of Chinese volunteers by immunohistostaining and sandwich ELISA. We obtained credible extracellular protein 2-DE graphs of prostate cell lines. The 5 spots that showed superior repeatability were selected for LC-MS/MS analysis, which identified seven candidate molecules. One of the candidate molecules, spondin-2 (SPON2), was only expressed in the conditioned media (CM) of androgen receptor (AR) positive PCa cell lines. Using tissue microarray by immunohistostaining, we found SPON2 to be over-expressed in PCa. SPON2 staining was more intense in Gleason score sum 7-8 and in PCa patients with metastasis. By receiver operator characteristic (ROC) curve analysis, we found that the serum SPON2 level was elevated in PCa patients, showing sensitivity and specificity suitable for diagnostic use. We also found that SPON2 could be used to identify PCa patients with serum PSA levels no higher than 10 ng/ml from healthy elderly men. CONCLUSION/SIGNIFICANCE: SPON2 is a new serum and histological diagnostic biomarker for PCa. It can avoid some of the problems of PSA testing and was here found to offer relatively high sensitivity and specificity relative to PSA

    Critical Period of Nonpromoter DNA Methylation Acquisition during Prenatal Male Germ Cell Development

    Get PDF
    The prenatal period of germ cell development is a key time of epigenetic programming in the male, a window of development that has been shown to be influenced by maternal factors such as dietary methyl donor supply. DNA methylation occurring outside of promoter regions differs significantly between sperm and somatic tissues and has recently been linked with the regulation of gene expression during development as well as successful germline development. We examined DNA methylation at nonpromoter, intergenic sequences in purified prenatal and postnatal germ cells isolated from wildtype mice and mice deficient in the DNA methyltransferase cofactor DNMT3L. Erasure of the parental DNA methylation pattern occurred by 13.5 days post coitum (dpc) with the exception of approximately 8% of loci demonstrating incomplete erasure. For most loci, DNA methylation acquisition occurred between embryonic day 13.5 to 16.5 indicating that the key phase of epigenetic pattern establishment for intergenic sequences in male germ cells occurs prior to birth. In DNMT3L-deficient germ cells at 16.5 dpc, average DNA methylation levels were low, about 30% of wildtype levels; however, by postnatal day 6, about half of the DNMT3L deficiency-specific hypomethylated loci had acquired normal methylation levels. Those loci normally methylated earliest in the prenatal period were the least affected in the DNMT3L-deficient mice, suggesting that some loci may be more susceptible than others to perturbations occurring prenatally. These results indicate that the critical period of DNA methylation programming of nonpromoter, intergenic sequences occurs in male germline progenitor cells in the prenatal period, a time when external perturbations of epigenetic patterns could result in diminished fertility

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore