42 research outputs found

    The Interplay of Variants Near LEKR and CCNL1 and Social Stress in Relation to Birth Size

    Get PDF
    Background We previously identified via a genome wide association study variants near LEKR and CCNL1 and in the ADCY5 genes lead to lower birthweight. Here, we study the impact of these variants and social stress during pregnancy, defined as social adversity and neighborhood disparity, on infant birth size. We aimed to determine whether the addition of genetic variance magnified the observed associations. Methodology/Principal Findings We analyzed data from the Northern Finland Birth Cohort 1986 (n = 5369). Social adversity was defined by young maternal age (<20 years), low maternal education (<11 years), and/or single marital status. Neighborhood social disparity was assessed by discrepancy between neighborhoods relative to personal socio-economic status. These variables are indicative of social and socioeconomic stress, but also of biological risk. The adjusted multiple regression analysis showed smaller birth size in both infants of mothers who experienced social adversity (birthweight by −40.4 g, 95%CI −61.4, −19.5; birth length −0.14 cm, 95%CI −0.23, −0.05; head circumference −0.09 cm 95%CI −0.15, −0.02) and neighborhood disparity (birthweight −28.8 g, 95%CI −47.7, −10.0; birth length −0.12 cm, 95%CI −0.20, −0.05). The birthweight-lowering risk allele (SNP rs900400 near LEKR and CCNL1) magnified this association in an additive manner. However, likely due to sample size restriction, this association was not significant for the SNP rs9883204 in ADCY5. Birth size difference due to social stress was greater in the presence of birthweight-lowering alleles. Conclusions/Significance Social adversity, neighborhood disparity, and genetic variants have independent associations with infant birth size in the mutually adjusted analyses. If the newborn carried a risk allele rs900400 near LEKR/CCNL1, the impact of stress on birth size was stronger. These observations give support to the hypothesis that individuals with genetic or other biological risk are more vulnerable to environmental influences. Our study indicates the need for further research to understand the mechanisms by which genes impact individual vulnerability to environmental insults

    Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration

    No full text
    Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11–19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes

    Ambidextrous Knowledge Sharing within R&D Teams and Multinational Enterprise Performance: The Moderating Effects of Cultural Distance in Uncertainty Avoidance

    No full text

    Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au plus Au Collisions

    No full text
    Rapidity-odd directed flow (upsilon 1) measurements for charged pions, protons, and antiprotons near midrapidity (y = 0) are reported in root(S)(NN) = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeVAu+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter d upsilon(1) = d upsilon(1)vertical bar (y=0) shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton d upsilon(1) = d upsilon(1)vertical bar (y=0) changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations

    Suppression of Upsilon production in d plus Au and Au plus Au collisions at root S-NN=200 GeV

    No full text
    We report measurements of Upsilon meson production in p + p, d + Au, and Au + Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au + Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in the rapidity range vertical bar y vertical bar < 1 in d + Au collisions of R-dAu = 0.79 +/- 0.24(stat.) +/- 0.03(syst.) +/- 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R-AA = 0.49 +/- 0.1(stat.) +/- 0.02(syst.) +/- 0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made735127137CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPRHIC Operations Group; NERSC Center at LBNL; KISTI Center in Korea; Open Science Grid consortium; National Science Foundation (NSF); Centre National de la Recherche Scientifique (CNRS); Ministry of Education and Science, Russian Federation; National Natural Science Foundation of China (NSFC); Chinese Academy of Sciences; Korean Research Foundation, GA; Ministry of Education, Youth & Sports - Czech Republic; FIAS of Germany; Department of Atomic Energy (DAE); Department of Science & Technology (India); Council of Scientific & Industrial Research (CSIR) - India; National Science Center, Poland; RosAtom of Russia ; RCF at BNL; United States Department of Energy (DOE); United States Department of Energy (DOE); Ministry of Education, China; Ministry of Science and Technology, China; Ministry of Science, Education and Sports, Republic of Croatia; National Science Foundation (NSF); NSF - Directorate for Mathematical & Physical Sciences (MPS

    Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au plus Au Collisions at RHIC

    No full text
    We report the first measurements of the moments-mean (M), variance (sigma(2)), skewness (S), and kurtosis (kappa)-of the net-charge multiplicity distributions at midrapidity in Au + Au collisions at seven energies, ranging from root s(NN) = 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, sigma(2)/M, S sigma, and kappa sigma(2), with the expectations from Poisson and negative binomial distributions (NBDs). The S sigma values deviate from the Poisson baseline and are close to the NBD baseline, while the kappa sigma(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models
    corecore