27 research outputs found

    Disruption of Ant-Aphid Mutualism in Canopy Enhances the Abundance of Beetles on the Forest Floor

    Get PDF
    Ant-aphid mutualism is known to play a key role in the structure of the arthropod community in the tree canopy, but its possible ecological effects for the forest floor are unknown. We hypothesized that aphids in the canopy can increase the abundance of ants on the forest floor, thus intensifying the impacts of ants on other arthropods on the forest floor. We tested this hypothesis in a deciduous temperate forest in Beijing, China. We excluded the aphid-tending ants Lasius fuliginosus from the canopy using plots of varying sizes, and monitored the change in the abundance of ants and other arthropods on the forest floor in the treated and control plots. We also surveyed the abundance of ants and other arthropods on the forest floor to explore the relationships between ants and other arthropods in the field. Through a three-year experimental study, we found that the exclusion of ants from the canopy significantly decreased the abundance of ants on the forest floor, but increased the abundance of beetles, although the effect was only significant in the large ant-exclusion plot (80*60 m). The field survey showed that the abundance of both beetles and spiders was negatively related to the abundance of ants. These results suggest that aphids located in the tree canopy have indirect negative effects on beetles by enhancing the ant abundance on the forest floor. Considering that most of the beetles in our study are important predators, the ant-aphid mutualism can have further trophic cascading effects on the forest floor food web

    A New (Old), Invasive Ant in the Hardwood Forests of Eastern North America and Its Potentially Widespread Impacts

    Get PDF
    Biological invasions represent a serious threat for the conservation of biodiversity in many ecosystems. While many social insect species and in particular ant species have been introduced outside their native ranges, few species have been successful at invading temperate forests. In this study, we document for the first time the relationship between the abundance of the introduced ant, Pachycondyla chinensis, in mature forests of North Carolina and the composition, abundance and diversity of native ant species using both a matched pair approach and generalized linear models. Where present, P. chinensis was more abundant than all native species combined. The diversity and abundance of native ants in general and many individual species were negatively associated with the presence and abundance of P. chinensis. These patterns held regardless of our statistical approach and across spatial scales. Interestingly, while the majority of ant species was strongly and negatively correlated with the abundance and presence of P. chinensis, a small subset of ant species larger than P. chinensis was either as abundant or even more abundant in invaded than in uninvaded sites. The large geographic range of this ant species combined with its apparent impact on native species make it likely to have cascading consequences on eastern forests in years to come, effects mediated by the specifics of its life history which is very different from those of other invasive ants. The apparent ecological impacts of P. chinensis are in addition to public health concerns associated with this species due to its sometimes, deadly sting

    Change in dominance determines herbivore effects on plant biodiversity

    Get PDF
    Herbivores alter plant biodiversity (species richness) in many of the world’s ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis—that herbivore-induced changes in the competitive environment determine the response of plant biodiversity to herbivory irrespective of productivity. Under this hypothesis, when herbivores reduce the abundance (biomass, cover) of dominant species (for example, because the dominant plant is palatable), additional resources become available to support new species, thereby increasing biodiversity. By contrast, if herbivores promote high dominance by increasing the abundance of herbivory-resistant, unpalatable species, then resource availability for other species decreases reducing biodiversity. We show that herbivore-induced change in dominance, independent of site productivity or precipitation (a proxy for productivity), is the best predictor of herbivore effects on biodiversity in grassland and savannah sites. Given that most herbaceous ecosystems are dominated by one or a few species, altering the competitive environment via herbivores or by other means may be an effective strategy for conserving biodiversity in grasslands and savannahs globally

    Climatic change controls productivity variation in global grasslands

    Get PDF
    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms
    corecore