4,226 research outputs found

    The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Climate models exhibit large biases in sea ice area (SIA) in their historical simulations. This study explores the impacts of these biases on multimodel uncertainty in Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble projections of 21st century change in Antarctic surface temperature, net precipitation, and SIA. The analysis is based on time slice climatologies in the Representative Concentration Pathway 8.5 future scenario (2070-2099) and historical (1970-1999) simulations across 37 different CMIP5 models. Projected changes in net precipitation, temperature, and SIA are found to be strongly associated with simulated historical mean SIA (e.g., cross-model correlations of r = 0.77, 0.71, and -0.85, respectively). Furthermore, historical SIA bias is found to have a large impact on the simulated ratio between net precipitation response and temperature response. This ratio is smaller in models with smaller-than-observed SIA. These strong emergent relationships on SIA bias could, if found to be physically robust, be exploited to give more precise climate projections for Antarctica.We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table S1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided the coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The original CMIP5 data can be accessed through the ESGF data portals (see http://pcmdi-cmip.llnl.gov/cmip5/ availability.html). This study is part of the British Antarctic Survey Polar Science for Planet Earth Programme. It was funded by The UK Natural Environment Research Council (grant reference NE/K00445X/1). We would like to thank Paul Holland for his useful discussions and comments on an earlier version of this manuscript

    A comparison of four different approaches to measuring health utility in depressed patients.

    Get PDF
    BACKGROUND: A variety of instruments are used to measure health related quality of life. Few data exist on the performance and agreement of different instruments in a depressed population. The aim of this study was to investigate agreement between, and suitability of, the EQ-5D-3L, EQ-5D Visual Analogue Scale (EQ-5D VAS), SF-6D and SF-12 new algorithm for measuring health utility in depressed patients. METHODS: The intraclass correlation coefficient (ICC) and Bland and Altman approaches were used to assess agreement. Instrument sensitivity was analysed by: (1) plotting utility scores for the instruments against one another; (2) correlating utility scores and depressive symptoms (Beck Depression Inventory (BDI)); and (3) using Tukey's procedure. Receiver Operating Characteristic (ROC) analysis assessed instrument responsiveness to change. Acceptability was assessed by comparing instrument completion rates. RESULTS: The overall ICC was 0.57. Bland and Altman plots showed wide limits of agreement for each pair wise comparison, except between the SF-6D and SF-12 new algorithm. Plots of utility scores displayed 'ceiling effects' in the EQ-5D-3L index and 'floor effects' in the SF-6D and SF-12 new algorithm. All instruments showed a negative monotonic relationship with BDI, but the EQ-5D-3L index and EQ-5D VAS could not differentiate between depression severity sub-groups. The SF-based instruments were better able to detect changes in health state over time. There was no difference in completion rates of the four instruments. CONCLUSIONS: There was a lack of agreement between utility scores generated by the different instruments. According to the criteria of sensitivity, responsiveness and acceptability that we applied, the SF-6D and SF-12 may be more suitable for the measurement of health related utility in a depressed population than the EQ-5D-3L, which is the instrument currently recommended by NICE.The CoBalT study was funded by the National Institute for Health Research Health Technology Assessment (NIHR HTA) programme (project number: 06/ 404/02)

    Lagrangian particle path formulation of multilayer shallow-water flows dynamically coupled to vessel motion

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.The coupled motion—between multiple inviscid, incompressible, immiscible fluid layers in a rectangular vessel with a rigid lid and the vessel dynamics—is considered. The fluid layers are assumed to be thin and the shallow-water assumption is applied. The governing form of the Lagrangian functional in the Lagrangian particle path (LPP) framework is derived for an arbitrary number of layers, while the corresponding Hamiltonian is explicitly derived in the case of two- and three-layer fluids. The Hamiltonian formulation has nice properties for numerical simulations, and a fast, effective and symplectic numerical scheme is presented in the two- and three-layer cases, based upon the implicit-midpoint rule. Results of the simulations are compared with linear solutions and with the existing results of Alemi Ardakani et al. (J Fluid Struct 59:432–460, 2015) which were obtained using a finite volume approach in the Eulerian representation. The latter results are extended to non-Boussinesq regimes. The advantages and limitations of the LPP formulation and variational discretization are highlighted.This work is supported by the EPSRC under Grant number EP/K008188/1

    Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.A class of augmented approximate Riemann solvers due to George (2008) is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL). A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.The research reported in this paper is supported by the EPSRC under Grant number EP/K008188/1. Due to confidentiality agreements with research collaborators, supporting data can only be made available to bona fide researchers subject to a non-disclosure agreement. Details of the data and how to request access are available from the University of Surrey publications repository: [email protected]. The authors are grateful to both referees for their valuable comments

    Adaptation of f-wave finite volume methods to the two-layer shallow-water equations in a moving vessel with a rigid-lid

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordA numerical method is proposed to solve the two-layer inviscid, incompressible and immiscible 1D shallow-water equations in a moving vessel with a rigid-lid with different boundary conditions based on the high-resolution f-wave finite volume methods due to Bale et al. (2002). The method splits the jump in the fluxes and source terms including the pressure gradient at the rigid-lid into waves propagating away from each grid cell interface. For the influx-efflux boundary conditions the time dependent source terms are handled via a fractional step approach. In the linear case the numerical solutions are validated by comparison with the exact analytical solutions. Numerical solutions presented for the nonlinear case include shallow-water sloshing waves due to prescribed surge motion of the vessel.The research reported in this paper is supported by the Engineering and Physical Sciences Research Council Grant EP/K008188/1. Due to confidentiality agreements with research collaborators, supporting data can only be made available to bona fide researchers subject to a non-disclosure agreement. Details of the data and how to request access are available from the University of Surrey publications repository: [email protected]

    On the nature of the high-energy rollover in 1H 0419-577

    Get PDF
    A NuSTAR/Swift observation of the luminous Seyfert 1 galaxy 1H 0419-577 taken during 2015 reveals one of the most extreme high-energy cut-offs observed to date from an AGN – an origin due to thermal Comptonization would imply a remarkably low coronal temperature kT ∼ 15 keV. The low-energy peak of the spectrum in the hard X-ray NuSTAR band, which peaks before the expected onset of a Compton hump, rules out strong reflection as the origin of the hard excess in this AGN. We show the origin of the high-energy rollover is likely due to a combination of both thermal Comptonization and an intrinsically steeper continuum, which is modified by absorption at lower energies. Furthermore, modelling the broad-band XUV continuum shape as a colour-corrected accretion disc, requires the presence of a variable warm absorber to explain all flux and spectral states of the source, consistent with the previous work on this AGN. While absorber variations produce marked spectral variability in this AGN, consideration of all flux states allows us to isolate a colourless component of variability that may arise from changes in the inner accretion flow, typically at around 10 rg

    The Suzaku view of highly-ionised outflows in AGN: II -- Location, energetics and scalings with Bolometric Luminosity

    Get PDF
    Ongoing studies with XMM-Newton have shown that powerful accretion disc winds, as revealed through highly-ionised Fe\,K-shell absorption at E>=6.7 keV, are present in a significant fraction of Active Galactic Nuclei (AGN) in the local Universe (Tombesi et al. 2010). In Gofford et al. (2013) we analysed a sample of 51 Suzaku-observed AGN and independently detected Fe K absorption in ~40% of the sample, and we measured the properties of the absorbing gas. In this work we build upon these results to consider the properties of the associated wind. On average, the fast winds (v_out>0.01c) are located ~10^{15-18} cm (typically ~10^{2-4} r_s) from their black hole, their mass outflow rates are of the order ~0.01-1 Msun/yr or ~(0.01-1) M_edd and kinetic power is constrained to ~10^{43-45} erg/s, equivalent to ~(0.1-10%) L_edd. We find a fundamental correlation between the source bolometric luminosity and the wind velocity, with v_out \propto L_bol^{\alpha} and \alpha=0.4^{+0.3}_{-0.2}$ (90% confidence), which indicates that more luminous AGN tend to harbour faster Fe K winds. The mass outflow rate M_out, kinetic power L_k and momentum flux P_out of the winds are also consequently correlated with L_bol, such that more massive and more energetic winds are present in more luminous AGN. We investigate these properties in the framework of a continuum-driven wind, showing that the observed relationships are broadly consistent with a wind being accelerated by continuum-scattering. We find that, globally, a significant fraction (~85%) of the sample can plausibly exceed the L_k/L_bol~0.5% threshold thought necessary for feedback, while 45% may also exceed the less conservative ~5% of L_bol threshold as well. This suggests that the winds may be energetically significant for AGN--host-galaxy feedback processes

    Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats

    Get PDF
    Rationale Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Objectives Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. Methods The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. Results We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. Conclusions These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control

    Black Stork Down: Military Discourses in Bird Conservation in Malta

    Get PDF
    Tensions between Maltese hunters and bird conservation NGOs have intensified over the past decade. Conservation NGOs have become frustrated with the Maltese State for conceding to the hunter lobby and negotiating derogations from the European Union’s Bird Directive. Some NGOs have recently started to organize complex field-operations where volunteers are trained to patrol the landscape, operate drones and other surveillance technologies, detect illegalities, and lead police teams to arrest poachers. We describe the sophisticated military metaphors which conservation NGOs have developed to describe, guide and legitimize their efforts to the Maltese public and their fee-paying members. We also discuss why such groups might be inclined to adopt these metaphors. Finally, we suggest that anthropological studies of discourse could help understand delicate contexts such as this where conservation NGOs, hunting associations and the State have ended in political deadlock
    corecore