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Abstract. A numerical method is proposed to solve the two-layer inviscid,
incompressible and immiscible 1D shallow-water equations in a moving vessel
with a rigid-lid with different boundary conditions based on the high-resolution
f-wave finite volume methods due to Bale, LeVeque, Mitran and Ross-
manith [7] (2002, SIAM J. Sci. Comput. 24). The method splits the jump
in the fluxes and source terms including the pressure gradient at the rigid-lid
into waves propagating away from each grid cell interface. For the influx-
efflux boundary conditions the time dependent source terms are handled via
a fractional step approach. In the linear case the numerical solutions are vali-
dated by comparison with the exact analytical solutions. Numerical solutions
presented for the nonlinear case include shallow-water sloshing waves due to
prescribed surge motion of the vessel.

1 Introduction

Multiple layers with differing density are widely used as simplified models for stratified flows,
and are particularly useful when the density stratification is sharp. The interest here is in
two-layer flow in shallow water where the flow is bounded above by a rigid lid. The main
difficulty is that the rigid lid requires a constraint, which is enforced by including a pressure
field in the equations. Our motivation is modelling ocean wave energy harvesters which
bring in additional difficulties: the vessel is moving, there is mass flux into and out of the
vessel, and wetting and drying may occur. In this paper we consider the two-layer shallow
water model with a rigid lid with both fixed boundaries and influx-efflux boundaries, and
the simplest case of vessel motion (surge), whereas wetting-drying is left for future work. An
introduction to shallow water multi-layer models is given in the book of Baines [6]. There
has been a vast number of studies of two layer models, too numerous to mention here, but
papers that have influenced the strategy here are [5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19,
20, 21, 24, 25, 26, 27, 28, 29, 30].

The ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd (OWEL),
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a schematic of which can be found on the website [1], is a floating rectangular device, open at
one end to allow waves in. Once they are trapped, the waves undergo interior fluid sloshing.
A rise in the wave height is induced within the duct. The wave then creates a seal with the
rigid lid resulting in a moving trapped pocket of air ahead of the wave front which drives the
power take off. The strategy is to use the two-layer inviscid, incompressible and immiscible
shallow-water equations as a starting point in studying the dynamics of the fluid flows in
these floating offshore structures.

A class of high resolution wave-propagation finite volume methods are developed in [22]
for multidimensional hyperbolic systems. These methods are based on solving Riemann
problems for waves that define both first order updates to cell averages and also second
order corrections which can be modified by limiter functions to obtain high resolution nu-
merical solutions. The wave-propagation algorithms are modified in [7] for conservation laws
and balance laws with spatially varying flux functions and called f-wave-propagation meth-
ods. The main novel feature of the modified algorithms is to solve the Riemann problems
by decomposition of the jump in the flux functions into waves propagating out from each
grid cell interface instead of decomposition of the jump in cell averages. In [14, 15] a class
of augmented approximate Riemann solvers is developed for the single layer shallow water
equations in the presence of a variable bottom surface using the f-wave-propagation algo-
rithm. The solver is based on a decomposition of an augmented solution vector including the
depth, momentum, momentum flux and the bottom surface. This solver is well-balanced,
maintains depth non-negativity and extends to Riemann problems with an initial dry state.
In [26, 27] the f-wave-propagation finite volume method is used to develop solvers for the
multilayer shallow water equations in one and two dimensions. The proposed approximate
Riemann solvers also handle dry states in the system where the bottom layer depth becomes
zero. In [19] the two-layer shallow water system is studied using the f-wave methods. It is
discussed that the two-layer system is conditionally hyperbolic because of the coupling terms
between the layers. These terms may cause the eigenvalues to become imaginary. In [18]
the f-wave method is used to solve the wave propagation problems generated by submarine
landslides. Also several types of the Boussinesq equations are reviewed and implemented
with a hybrid of high-resolution finite volume and finite difference methods. In [25] a numer-
ical scheme for solving the shallow water equations with local bed efflux/influx is developed
based on a modified wave propagation algorithm.

In this paper we are interested in the numerical study of the two-layer shallow-water
flows with a rigid-lid with f-wave-propagation high resolution finite volume methods. To
our knowledge this is the first paper which uses the f-wave methods to solve the two-layer
shallow water system with the rigid-lid pressure gradient, and time-dependent forcing for
two-layer shallow-water sloshing.

The two-layer shallow-water system with a rigid-lid and horizontal surge forcing can be
derived by integrating the Euler equations in the vertical coordinate direction. The starting
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point for the paper is the governing 1D equations in the form

(ρ1h1)t + (ρ1h1u1)x = 0 ,

(ρ1h1u1)t +
(
ρ1h1u

2
1 + 1

2
ρ1gh

2
1

)
x

= −ρ1gh1h2x − h1px − ρ1h1q̈ ,

(ρ2h2)t + (ρ2h2u2)x = 0 ,

(ρ2h2u2)t +
(
ρ2h2u

2
2 + 1

2
ρ2gh

2
2

)
x

= −ρ1gh2h1x − h2px − ρ2h2q̈ ,

h1 (x, t) + h2 (x, t) = d ,

(1.1)

where h1 , u1 and ρ1 denote the depth, velocity and density of the upper layer, and h2 , u2

and ρ2 correspond to the lower layer. The variable p is the pressure at the rigid-lid, and
g is the gravity constant. The function q(t) is the prescribed surge forcing which will be
included in §6. The last equation in (1.1) is the rigid-lid constraint with d a given positive
constant representing the height of the vessel. The first and third equations in (1.1) are the
conservation of mass, and the second and fourth equations are the conservation of momentum
for each layer.

Another form of the two-layer shallow water system (1.1) is obtained by replacing the
fourth equation of (1.1) by

(ρ2h2u2)t +
(
ρ2h2u

2
2 + 1

2
ρ2gh

2
2 + ρ1gh1h2

)
x

= ρ1gh1h2x − h2px − ρ2h2q̈ . (1.2)

The form of the fourth equation is chosen so that the non-conservative coupling terms in
each layer become symmetric [5, 27]. The symmetry in the non-conservative products has the
benefit that the transfer of momentum due to these coupling terms moves directly between
the layers which is advantageous in numerical integration [27]. A schematic of the two-layer
shallow-water system with a rigid-lid is shown in Figure 1.

In solving the two-layer shallow-water system numerically several difficulties arise. First,
because the two-layer 1D shallow-water equations are in non-conservative form, the system
of equations is conditionally hyperbolic. Secondly, an explicit expression cannot be found
for the eigenvalues of the two layer system which is inconvenient for Riemann solution based
numerical schemes [19, 5]. Thirdly, a numerical scheme is required to be well-balanced
with source terms since the quasi-linear two-layer shallow-water system is non-conservative
[19]. Fourthly, the non-conservative products are not well-defined for discontinuous solutions
which can lead to several notions of weak solutions [9]. In practice, there is a lack of a
Rankine-Hugoniot condition in order to define jump relations at a discontinuity [9]. The
disadvantage of using the system (1.2) rather than the system (1.1) is that the flux Jacobian
of (1.2) gives eigenvalues and eigenvectors which would be identical to two uncoupled shallow-
water equation systems [27, 12]. It is shown in [12] that the approach of using a splitting
of the layers would be unstable [27] unless suitable corrections are used [9, 27]. Since the
wave speeds predicted by the eigenstructure of the system (1.2) do not take into account the
coupling between the layers, the eigenstructure of this system is not desirable for methods
that depend on this information to construct a Riemann solution [27]. So the strategy is to
use the two-layer shallow water system (1.1) to determine the required eigenstructure for the
f-wave finite volume analysis, and use the system (1.2) to calculate the jump in the fluxes.
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Figure 1: Schematic of two-layer fluids bounded by horizontal top and bottom impermeable
walls.

The paper starts by pre-conditioning the governing equations (1.1) [26, 27] for numerics
in §2. The essential details of the f-wave finite volume method are discussed in §3. The exact
linear solution for the two-layer shallow water system with a rigid-lid is recorded in §4. For
validation, a linear f-wave finite volume solver is developed in §5.1 in order to compare the
numerical results with the exact linear solutions with rigid wall boundary conditions. F-wave
finite volume solvers are developed for the full nonlinear hyperbolic systems with rigid walls
in §5.2. In §6 some results are presented for two-layer shallow water waves sloshing inside
a container with a rigid-lid and under a prescribed surge forcing. In §7.1 a fractional step
approach together with the f-wave algorithm is used to solve the linear two-layer shallow-
water system with influx-efflux boundary conditions. The numerical solutions are compared
with the exact solutions in §4. F-wave finite volume solvers are developed for the fully
nonlinear hyperbolic systems with influx-efflux boundary conditions in §7.2. Finally the
paper ends with some concluding remarks in §8.

2 Pre-conditioning the equations for numerics

The two-layer shallow water system (1.1) can be written in the following balance law form

qt + f (q)x = Ψ (q) , (2.1)

where

q (x, t) =


ρ1h1

ρ1h1u1

ρ2h2

ρ2h2u2

 , f (q) =


ρ1h1u1

ρ1h1u
2
1 + 1

2
ρ1gh

2
1

ρ2h2u2

ρ2h2u
2
2 + 1

2
ρ2gh

2
2

 ,Ψ (q) =


0

−ρ1gh1h2x − h1px − ρ1h1q̈
0

−ρ1gh2h1x − h2px − ρ2h2q̈

 .

This system can be written in quasi-linear form as

qt + A (q) qx = Ψ̂ (q) , (2.2)

where the Jacobian matrix A (q) and the vector of source terms Ψ̂ (q) are

A (q) =


0 1 0 0

−u2
1 + gh1 2u1 rgh1 0

0 0 0 1
gh2 0 −u2

2 + gh2 2u2

 , Ψ̂ (q) =


0

−h1px − ρ1h1q̈
0

−h2px − ρ2h2q̈

 .
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The characteristic polynomial of A (q) reads(
(λ− u2)2 − gh2

) (
(λ− u1)2 − gh1

)
− rg2h1h2 = 0 , (2.3)

where r =
ρ1

ρ2

. Interesting geometrical interpretations of (2.3) are discussed in [28, 19, 18].

Several approaches have been used to find the eigenvalues of the characteristic equation (2.3).
In [21] an explicit expression for the roots of a fourth degree polynomial is used to evaluate
the eigenvalues directly. This approach is appealing and it is being tested on the equations
for the two-fluid system. However, numerically this direct approach is expensive and dif-
ficult to do with precision [27]. Instead different approaches are used to approximate the
eigenspace. In [29] a velocity difference expansion method is used to evaluate the eigenvalues.
Approximations are based on an expansion about the differences in layer speeds u1 − u2 .
Under the assumptions that |u1−u2| and (1− r) are very small, first order approximations
for the eigenspeeds are

λ±ext ≈
h1u1 + h2u2

h1 + h2

±
√
g (h1 + h2) , (2.4)

corresponding to wave speeds of surface waves and

λ±int ≈
h1u2 + h2u1

h1 + h2

±

√√√√g′
h1h2

h1 + h2

(
1− (u1 − u2)2

g′ (h1 + h2)

)
, (2.5)

where g′ = g (1− r) is the reduced gravity, corresponding to wave speeds at the internal
surface. So it can be concluded that the internal eigenvalues λ±int are conditionally real if

(u1 − u2)2

g′ (h1 + h2)
< 1 , (2.6)

and it is expected when |u1 − u2| becomes large enough the shear stress grows and leads to
the Kelvin-Helmholtz (KH) instability. So this condition is linked to the KH instability of
the stratified flows [19, 18]. See [11] for the numerical treatment of the loss of hyperbolicity
of the two layer shallow water system, and see [8] for the nonlinear stability analysis of
two-layer shallow water equations with a rigid-lid. This approach for the approximation of
the eigenvalues is useful only for two-layer shallow fluid flows with densities very close to
each other (Boussinesq approximation). In this paper we are interested in two-layer shallow
fluid flows within the non-Boussinesq limit. Hence, we adapt the following approach for the
approximation of the eigenvalues.

Another approach to approximating the eigenstructure of (1.1) is to use the eigenvalues
of the linearized system [27] with the characteristic polynomial(

λ2 − gh0
2

) (
λ2 − gh0

1

)
− rg2h0

1h
0
2 = 0 , (2.7)

where h0
1 and h0

2 are the upper layer and lower layer fluid depths at rest, respectively.
Assuming that the eigenvectors have the form x̃ = [1, λ, χ, λχ]T , the unknowns λ and χ can
be found from Ax̃ = λx̃ , A is defined in (4.1),

gh0
1 (1 + χr) = λ2 ,

gh0
2 (1 + χ) = λ2χ .

(2.8)
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Now eliminating λ from both equations, a quadratic equation for χ can be found

χ2 +
1

r
(1− β)χ− β

r
= 0 , (2.9)

giving

2χ± = −1

r
(1− β)± 1

r

√
(1− β)2 + 4βr , (2.10)

where β =
h0

2

h0
1

. Now λ can be found in terms of either the top or bottom layers,

λ = ±
√
gh0

1

√
1 + χr ,

λ = ±
√
gh0

2

√
1 + χ

χ
,

(2.11)

and it is discussed in [27, 19, 18] that the external and internal eigenvalues are

λ1
ext = −

√
gh0

1 (1 + χ+r) , λ1
int = −

√
gh0

1 (1 + χ−r) ,

λ2
int =

√
gh0

1 (1 + χ−r) , λ2
ext =

√
gh0

1 (1 + χ+r) ,

(2.12)

with eigenvectors

Λ =


1 1 1 1

−
√
gh01 (1 + χ+r) −

√
gh01 (1 + χ−r)

√
gh01 (1 + χ−r)

√
gh01 (1 + χ+r)

χ+ χ− χ− χ+

−χ+
√
gh01 (1 + χ+r) −χ−

√
gh01 (1 + χ−r) χ−

√
gh01 (1 + χ−r) χ+

√
gh01 (1 + χ+r)

 .
(2.13)

Since the eigenspace is completely determined by the initial conditions in the linear limit
and does not change in time, an alternative to this is to use the full values of β , h1 and h2

for the nonlinear equations [26]. This eigenspace is valid for both the two-layer shallow-water
systems (1.1) and (1.2) [27]. We use this approach to approximate the eigenstructure of the
two-layer shallow water system in this paper.

Another approach in approximating the eigenspace of the nonlinear equations is to use
a numerical eigensolver such as LAPACK [27]. In using the f-wave finite volume methods
the state at which the quasi-linear matrix A (q) in (2.2) should be evaluated is prescribed.
But since the f-wave method is conservative regardless of the linearization used, a simple
arithmetic average of the state vector q can be used to evaluate the quasi-linear matrix
[26, 27]. A comparison of the different approaches described in this section is given in [27]
for the approximation of the eigenspace of the two layer shallow water equations with dry
states.

The third approach in approximating the eigenpairs which is used in this paper seems to
be cheaper than using a numerical eigensolver such as LAPACK. However a comparison of
both approaches for the numerical schemes used in the paper could be an interesting topic
for further research.

6



3 The f-wave-propagation numerical approach

The numerical method used in this paper to implement the linear and nonlinear two layer
shallow water equations with a rigid-lid is the high resolution wave propagation finite volume
algorithm developed by Bale et al. [7, 23] and used by [15, 27, 18]. This method is
briefly discussed here. Interested readers are referred to [7, 23, 14, 24, 15, 26, 27, 19, 18]
for full details. The wave propagation algorithm is a Godunov type finite volume method
often referred as REA algorithm, standing for reconstruction-evolve-average, making use of
Riemann problems to determine the numerical update at each time step. Godunov’s method
uses the Riemann solutions to evaluate cell interface fluxes at each time step. In LeVeque’s
wave propagation algorithm the waves arising in Riemann solutions are re-averaged onto
adjacent grid cells in order to update the numerical solution [15]. LeVeque’s method is
applicable to hyperbolic systems of the form (2.2). The solution to the Riemann problem
consists of m waves denoted by Wp ∈ Rm propagating out from each grid cell interface at
speeds sp . These waves are related to the jump discontinuity at each grid cell interface via

Qi −Qi−1 =
m∑
p=1

W
p
i−1/2 =

m∑
p=1

αp
i−1/2r

p
i−1/2 , (3.1)

where rpi−1/2 are eigenvectors of the approximate flux Jacobian Âi−1/2 and Qn
i = 1

∆x

∫
Ci
q (x, tn) dx

with Ci = [xi−1/2, xi+1/2] , ∆x = xi+1/2−xi−1/2 and ∆t = tn+1− tn and the domain is parti-
tioned into grid cells C . This amounts to a projection of the jump in Q onto the eigenspace
of Âi−1/2 . The first order upwind method then reads

Qn+1
i = Qn

i −
∆t

∆x

(
A+∆Qi−1/2 + A−∆Qi+1/2

)
. (3.2)

The fluctuations A±∆Qn
i∓1/2 are determined by solutions to Riemann problems at the cell

interfaces xi±1/2 . The term A+∆Qi−1/2 represents the net updating contribution from the
rightward moving waves into grid cell Ci from the left interface, and A−∆Qi+1/2 represents
the net updating contribution from the leftward moving waves into cell Ci from the right
interface. These fluctuations can be defined in terms of waves as

A±∆Qi−1/2 =
m∑
p=1

(
spi−1/2

)±
W

p
i−1/2 , (3.3)

where s+
i−1/2 = max(spi−1/2, 0) and s−i−1/2 = min(spi−1/2, 0). The wave propagation method

(3.2) can be extended to second order accuracy using limiters applied to each wave such that

Qn+1
i = Qn

i −
∆t

∆x

(
A+∆Qi−1/2 + A−∆Qi+1/2

)
− ∆t

∆x

(
F̃i+1/2 − F̃i−1/2

)
, (3.4)

where

F̃i−1/2 = 1
2

m∑
p=1

|spi−1/2|
(

1− ∆t

∆x
|spi−1/2|

)
W̃

p
i−1/2 ,
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where W̃
p
i−1/2 are limited versions of W

p
i−1/2 . There are different standard limiter functions

that ensure TVD stability of the solution (see [23, 15]). A common choice for the pair
{rpi−1/2, s

p
i−1/2} is the pth eigenpair of a local linear approximation to the flux Jacobian matrix

Â(q) at xi−1/2 such as Roe averaging. In [17] high-order wave propagation algorithms are
presented for hyperbolic systems. These methods combine the notion of wave propagation
[22, 23] and the method of lines and can in principle be extended to arbitrarily high order
accuracy by the use of high-order accurate spatial reconstructions and high-order accurate
ODE solvers [17]. The implementations presented in [17] are based on the fifth-order accurate
weighted essentially non-oscillatory (WENO) reconstruction and a fourth-order accurate
strong-stability-preserving Runge-Kutta scheme. This work also extends the f-wave approach
(described below) to high-order WENO schemes. A study of how these high-order algorithms
could be adapted for the numerical integration of two-layer shallow fluid flows inside a vessel
with a rigid-lid is an interesting topic for further study.

A consistent alternative approach to the wave propagation method (3.1) for a conservation
law is to decompose the jump in fluxes into waves instead of the states q such that

f (Qi)− f (Qi−1) =
m∑
p=1

Z
p
i−1/2 =

m∑
p=1

βp
i−1/2r

p
i−1/2 , (3.5)

where the waves Z
p
i−1/2 = βp

i−1/2r
p
i−1/2 are called f-waves and represent propagating jumps

in the flux and similar to the Ws we have Zp ∈ Rm . Fluctuations are therefore defined by

A±∆Qi−1/2 =
m∑
p=1

sgn(spi−1/2)Zp
i−1/2 . (3.6)

The higher order correction terms are given by

F̃i−1/2 = 1
2

m∑
p=1

sgn(spi−1/2)

(
1− ∆t

∆x
|spi−1/2|

)
Z̃
p
i−1/2 , (3.7)

where Z̃
p
i−1/2 is a limited version of the f-wave Z

p
i−1/2 using a TVD limiter [23].

The advantage of using the f-wave method over the wave-propagation method is that
it is conservative regardless of the linearization used for the flux Jacobian to calculate the
eigenspace. It also extends to spatially varying flux terms f(q, x) . The source terms can be
incorporated directly into the waves by subtracting them from the jump in the flux difference
and projecting the resulting vector onto the eigenspace such that

δ = f (Qi)− f (Qi−1)−∆xΨi−1/2 =
m∑
p=1

Z
p
i−1/2 , (3.8)

for some representation of the source term Ψ at xi−1/2 such that

∆xΨi−1/2 ≈
∫

Ψ (q, x) dx .
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The basic steps in implementing the f-wave-propagation method are the evaluation of the
relevant states to the Riemann problem using the vectors Qi and Qi−1 , computation of the
eigenvalues and eigenvectors (sp, rp) , computation of the jump in the fluxes and source terms
δ , projection of δ onto the eigenspace to determine the f-waves Zp , and finally calculation
of the fluctuations A±∆Q [27]. For most of the simulations in this paper the eigenstructure
of the linearized equations is used as a basis for the approximation of the eigenvalues and
eigenvectors of the nonlinear systems. See [26, 27] for more details.

4 Exact solutions of linearised equations

In this section exact solutions for the linearised version of the governing equations (1.1) are
presented with no-flow and influx-efflux boundary conditions in order to validate the linear
two-layer f-wave solvers. Consider the linearisation of the unforced system (1.1) about the
trivial state,

h1 (x, t) = h0
1 + h̃1 (x, t) , h2 (x, t) = h0

2 + h̃2 (x, t) ,

u1 (x, t) = ũ1 (x, t) , u2 (x, t) = ũ2 (x, t) , p (x, t) = p̃ (x, t) .

The linearised equations are
q̃t + A (q̃) q̃x = Ψ̂ (q̃) , (4.1)

where

q̃ =


ρ1h̃1

ρ1h
0
1ũ1

ρ2h̃2

ρ2h
0
2ũ2

 , A (q̃) =


0 1 0 0
gh0

1 0 rgh0
1 0

0 0 0 1
gh0

2 0 gh0
2 0

 , Ψ̂ (q̃) =


0

−h0
1p̃x
0

−h0
2p̃x

 ,

with the constraint h̃1(x, t) + h̃2(x, t) = 0. The eigenstructure of A(q̃) is given in (2.12) and

(2.13). Differentiating the rigid-lid constraint equation h̃1 + h̃2 = 0 with respect to time and
using the mass equations in (4.1) gives

h0
1ũ1 + h0

2ũ2 = Q (t) , (4.2)

which is independent of x . The function Q(t) is determined by the boundary conditions on
the horizontal velocities. Differentiating (4.2) with respect to time and using the momentum
equations in (4.1) gives an equation for the pressure gradient at the rigid-lid in terms of Qt ,

∂p̃

∂x
=

ρ1ρ2

ρ2h0
1 + ρ1h0

2

(
−gh0

2

(
∂h̃2

∂x
+ r

∂h̃1

∂x

)
− dQ

dt

)
. (4.3)

Consider harmonic solutions of the linearised equations of the following form

h̃1 (x, t) = H1 (x) cosωt , h̃2 (x, t) = H2 (x) cosωt ,

ũ1 (x, t) = A1 (x) sinωt , ũ2 (x, t) = A2 (x) sinωt ,

p̃ (x, t) = p̂ (x) cosωt .

(4.4)
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Substitution into the linear equations (4.1) and imposing the no-flow boundary conditions
at x = 0, L , then gives

h1 (x, t) = h0
1 +

h0
1

ω
Gα cosαx cosωt , h2 (x, t) = h0

2 −
h0

1

ω
Gα cosαx cosωt ,

u1 (x, t) = G sinαx sinωt , u2 (x, t) = −h
0
1

h0
2

G sinαx sinωt ,

(4.5)

with

α =
nπ

L
, ω =

nπ

L

√
ρ2g′h0

1h
0
2

ρ2h0
1 + ρ1h0

2

, (4.6)

for any integer n , and the linearised pressure field is

p̃(x, t) =
ρ1g
′h0

2

h0
1 + rh0

2

h̃1(x, t) + p0 cosωt ,

where p0 is an arbitrary constant.

Harmonic solutions with influx-efflux boundary conditions can also be found. Starting
with (4.2) and assuming that Q(t) = ε sinωt and considering periodic solutions of the form
(4.4) we get

h0
1A1(x) + h0

2A2(x) = ε ,

and equation (4.3) reduces to

−
(
ρ2h

0
1 + ρ1h

0
2

ρ1ρ2

)
p̂x + g′h0

2H1x = εω .

Combining this with the third equation of (4.1) then gives

d2A1

dx2
+ γ2A1 −

εω2

g′h0
1h

0
2

= 0 , γ2 =
ω2 (ρ2h

0
1 + ρ1h

0
2)

ρ2g′h0
1h

0
2

, (4.7)

with solution

A1 (x) = F cos γx+G sin γx+
εω2

γ2g′h0
1h

0
2

,

where F , G and ω are arbitrary constants. So the harmonic solutions with influx-efflux
boundary conditions and prescribed Q(t) are

h1 (x, t) = h0
1 +

h0
1

ω
(−Fγ sin γx+Gγ cos γx) cosωt ,

h2 (x, t) = h0
2 −

h0
1

ω
(−Fγ sin γx+Gγ cos γx) cosωt ,

u1 (x, t) =

(
F cos γx+G sin γx+

εω2

γ2g′h0
1h

0
2

)
sinωt ,

u2 (x, t) =
ε

h0
2

− h0
1

h0
2

(
F cos γx+G sin γx+

εω2

γ2g′h0
1h

0
2

)
sinωt ,

(4.8)

with γ and ω as given in (4.7). Further details on the derivation of the linear equations can
be found in [2].
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5 Numerical simulations with rigid walls at x = 0, L

In this section, results of the numerical simulations are presented for the case where the
forcing is absent, q(t) = 0, and no-flow boundary conditions are imposed at the horizontal
boundaries

u1(0, t) = u2(0, t) = u1(L, t) = u2(L, t) = 0 . (5.1)

First linear simulations are presented for validation, and compared to the exact linear so-
lutions derived in §4, and then fully nonlinear solutions with initial shock wave profiles are
presented. In all cases the numerical schemes are programmed in Matlab on a Windows 7,
64-bit Operating System with Processor of Intel(R) Core(TM) i7-3940XM CPU @ 3.20 GHz
with Memory of 32 GB. The typical clock time for 30000 time steps is about 6 minutes.

5.1 Linear simulations with rigid wall boundary conditions

The exact solution to the linearised equations are given in §4. The pressure gradient (4.3)
in this case simplifies to

∂p̃

∂x
=

ρ1ρ2

ρ2h0
1 + ρ1h0

2

(
−gh0

2

(
∂h̃2

∂x
+ r

∂h̃1

∂x

))
, (5.2)

which would be considered in the jump in the flux vectors δ in (3.8) and the resulting
differences are

δ =


[ρ1h

0
1ũ1]

[ρ1gh
0
1h̃1] + [ρ1gh

0
1h̃2] + h0

1A
[ρ2h

0
2ũ2]

[ρ2gh
0
2h̃2 + ρ1gh

0
1h̃2 + ρ1gh

0
2h̃1]− [ρ1gh

0
1h̃2] + h0

2A

 , (5.3)

where [.] represents the state differences across the cell interface and

A =
ρ1ρ2

ρ2h0
1 + ρ1h0

2

(
−gh0

2[h̃2 + rh̃1]
)
.

Before presenting some numerical results the required steps in implementing the f-wave-
propagation numerical algorithms for the linear and nonlinear two-layer shallow interfacial
equations are summarized as follows:

1. Determination of the unknown variables h1 , u1 , h2 and u2 at time level n on the left
and right sides of each grid cell interface.

2. Computation of the eigenvalues and eigenvectors (sp, rp) for the internal and external
waves based on (2.12) and (2.13) but using the full values of β , h1 and h2 for the
nonlinear equations.

3. Computation of the jump in the fluxes and source terms δ which is defined in (5.3)
and (5.6) for the linear and nonlinear equations, respectively.
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Figure 2: Snapshots of the wave profile at t = 2 s , t = 7 s for the first row from left to
right, t = 12 s , t = 19 s for the second row from left to right, and t = 24 s , t = 30 s for
the third row from left to right. The horizontal axis is x (m) and the vertical axis is the
interface height h(x, t) . The numerical solution is shown in solid line and the exact solution
in dashed red line.

4. Projection of the jump vector δ onto the eigenspaces in order to determine the f-waves
Zp .

5. Splitting each f-wave into two waves if it is expected to be an entropy violating transonic
rarefaction wave (see [24]).

6. Calculation of the fluctuations A±∆Qi−1/2 using (3.6) and the higher order correction

terms F̃i−1/2 using (3.7).

7. Calculation of the state vector Qi at time level n+ 1 using (3.4).

8. Updating the state vector Qi for problems with time-dependent source terms by solving
the ODEs (6.2) for the two-layer shallow interfacial sloshing problem with prescribed
surge forcing and by solving the ODEs (7.4) for the two-layer problem with open
boundary conditions.

The first simulation is a comparison with the exact oscillatory solution (4.5) using the
second order (in time and space) scheme (3.4) which is run in double precision. Take the
input parameters as

G = .03m, n = 1 , ρ1 = 900 kg/m3 , ρ2 = 1000 kg/m3 , L = 1m,

h0
1 = .05m, h0

2 = .07m, ∆x = .01m, ∆t = .001 sec , g = 9.81m/sec2 .

Figure 2 shows the snapshots of the computed and exact wave profiles up to 30 sec . The
numerical solutions are in good agreement with the exact solutions. For the simulations with
rigid wall boundary condition the constraint equation (4.2) modifies to

h0
1ũ1 + h0

2ũ2 = 0 .

12



Figure 3: First row: h0
1ũ1 + h0

2ũ2 at t = 10sec . Second row: h̃1 + h̃2 at x = .2m versus
time. Third row: h0

1ũ1 + h0
2ũ2 at x = .5m versus time.

Denoting the interior values of the cell averages by Qn
1 , . . . ,Q

n
N then the ghost cell values

for the simulations with no-flow boundary conditions are Q1−3,n
0 = Q1−3,n

1 , Q1−3,n
−1 = Q1−3,n

2 ,

Q1−3,n
N+1 = Q1−3,n

N , Q1−3,n
N+2 = Q1−3,n

N−1 , Q2−4,n
0 = −Q2−4,n

1 , Q2−4,n
−1 = −Q2−4,n

2 , Q2−4,n
N+1 = −Q2−4,n

N ,

and Q2−4,n
N+2 = −Q2−4,n

N−1 where Q1−3,n
0 are the first and third components of the vector Qn

0 ,

and Q2−4,n
0 are the second and fourth components of the vector Qn

0 . Injecting these values
for the ghost cells would result in no-flow boundary conditions for the rigid walls. Numerical
errors in preservation of the two constraints are shown in Figure 3. The first row in Figure
3 shows h0

1ũ1 + h0
2ũ2 at t = 30sec , the second row shows the conservation of the rigid-lid

constraint h̃1 + h̃2 = 0 at x = .2m versus time and the third row shows h0
1ũ1 + h0

2ũ2 = 0
at x = .5m versus time. The system constraints are locally preserved with an error of order
10−7 . Our observation shows that the errors remain bounded after 3× 104 time steps.

The magnitude of the error between the exact and numerical solutions can be quantified
by using the L1 norm. The L1 norm is commonly used for conservation laws [23]. Denoting
the numerical solution for the linear system (4.1) in each grid cell on space-time grid by Qn

i

and the exact solution by q̃ni = 1
∆x

∫ xi+1/2

xi−1/2
q̃ (x, tn) dx , the global error at time T = N∆t is

(see [23])
EN
i = QN

i − q̃Ni ,

and the L1 norm is

‖EN‖ = ∆x
N∑
i=1

|EN
i | .

The L1 errors in the numerical solutions versus time are shown in Figure 4, which are the
sum of the spatial and numerical errors in the numerical computations here. The error
between the exact and numerical solutions for h̃1 is depicted by the black line, for ũ1 by the
blue line, for h̃2 by the red line, and for ũ2 by the green line. The mesh sizes in measuring
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Figure 4: L1 errors in the numerical solutions versus time for h̃1 the black line, for ũ1 the
blue line, for h̃2 the red line, and for ũ2 the green line. The horizontal axis is time and the
vertical axis is the L1 error.

the errors are ∆t = .001 sec and ∆x = .0033m . The L1 errors are to the order of 10−6

after 3× 104 time steps.

Although the L1 errors are slightly growing over time (as is expected and tolerable) but
our numerical tests show that the errors would become smaller by decreasing the mesh sizes,
and Figure 5 shows that the numerical and exact solutions for the interface profile are in
very good agreement after 150 sec even for a bigger spatial mesh size ∆x = .02m . Also the
errors in preserving the system constraints are to the order of 10−7 and remain bounded for
150 sec as shown in the second and the third rows in Figure 5.

A range of other example simulations for linear rigid lid are presented in the report [2].

5.2 Nonlinear simulations with rigid wall boundary conditions

In this section the f-wave method is used to solve the nonlinear system (1.1) without the
forcing terms in the momentum equations. Differentiating the constraint equation h1(x, t)+
h2(x, t) = d with respect to time and using the mass equations in (1.1) gives

h1 (x, t)u1 (x, t) + h2 (x, t)u2 (x, t) = Q (t) , (5.4)

where Q(t) is to be set by the boundary conditions. For simulations with the rigid wall
boundary conditions it is zero. Differentiating this equation once more with respect to time
and using the momentum equations in (1.1) gives a nonlinear equation for the pressure
gradient at the rigid-lid

px =
ρ1ρ2

ρ2h1 + ρ1h2

(
−
(
h1u

2
1 + 1

2
gh2

1 + h2u
2
2 + 1

2
gh2

2 + rgh1h2

)
x
− g′h1h2x −Qt

)
. (5.5)
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Figure 5: First row: the numerical solution against the exact solution for the interface profile
at t = 150 s . The exact solution is shown in dashed red line. Second row: h̃1+h̃2 at x = .5m
versus time. Third row: h0

1ũ1 + h0
2ũ2 at x = .5m versus time.

The jump in the flux vectors δ can computed as

δ =


[ρ1h1u1]

[ρ1h1u
2
1 + 1

2
ρ1gh

2
1] + ρ1gh1[h2] + h1B

[ρ2h2u2]

[ρ2h2u
2
2 + 1

2
ρ2gh

2
2 + ρ1gh1h2]− ρ1gh1[h2] + h2B

 , (5.6)

with

B =
ρ1ρ2

ρ2h1 + ρ1h2

(
−[h1u

2
1 + 1

2
gh2

1 + h2u
2
2 + 1

2
gh2

2 + rgh1h2]− g′h1[h2]
)
,

where [.] and . represents the difference and average across the cell interface, respectively.
Averages are used for layer depths as motivated by the path-conservative jump conditions
assuming a linear path through state space (see [26, 27]).

For the first simulation set the initial interface a shock wave with the following form,

h1 (x, 0) = .07m, h2 (x, 0) = .05m for 0 ≤ x < .5 ,

h1 (x, 0) = .05m, h2 (x, 0) = .07m for .5 ≤ x ≤ 1 ,

and fluids are taken to be quiescent at t = 0. Take the input parameters as

ρ1 = 900 kg/m3 , ρ2 = 1000 kg/m3 , L = 1m,

∆x = .01m, ∆t = .001 sec , g = 9.81m/sec2 .

Figure 6 shows the snapshots of the computed wave profiles at different times. The non-
linear numerical solutions are validated against a Roe-type f-wave finite volume solver
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Figure 6: Snapshots of the wave profile at t = 1 s , t = 7 s for the first row from left to
right, t = 12.5 s , t = 19 s for the second row from left to right, and t = 24 s , t = 30 s for
the third row from left to right. The horizontal axis is x (m) and the vertical axis is the
interface height h(x, t) . Numerical solutions of the Roe-type f-wave finite volume solver of
[3] are depicted in dashed red line.

which is developed in [3] for the two-layer shallow interfacial sloshing equations derived
by Boonkasame and Milewski (2011). Figure 6 shows that the nonlinear solutions of
the presented solver are in good agreement with the numerical solutions resulted from the
Roe-type f-wave solver of [3]. See [3] for details of the new Roe-type f-wave finite volume
solver.

To test the ability of the numerical scheme to preserve the constraints, the error in
h1u1 + h2u2 at t = 30sec is shown in the first row in Figure 7. The second row shows the
error in h1 +h2−d at x = .5m versus time and the third row shows h1u1 +h2u2 at x = .5m
versus time. The error in preserving the rigid-lid constraint at x = .5m is to the order of
10−4 , and the error in preserving the volume flux is to the order of 10−5 . Our observation
shows that the errors remain bounded after 3× 104 time steps.

A second simulation is shown in figure 8. The initial conditions and input data are the
same as the previous run except that ρ1 is set to 800kg/m3 . The computed wave profiles
and the numerical errors are shown in Figures 8 and 9, respectively. Numerical errors remain
bounded after 3× 104 time steps.

Additional simulations for differing density ratios and initial data are reported in [2].

6 Two-layer sloshing due to prescribed surge forcing

In this section the numerical scheme is adapted to solve the two-layer shallow-water sloshing
equations in a container with a rigid-lid with prescribed surge forcing. The starting point is
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Figure 7: First row: h1u1 + h2u2 at t = 30sec . Second row: h1 + h2 − d at x = .5m versus
time. Third row: h1u1 + h2u2 at x = .5m versus time.

Figure 8: Nonlinear results with rigid wall boundary conditions for two fluids of densities
ρ1 = 800 kg/m3 and ρ2 = 1000 kg/m3 . Snapshots of the wave profile at t = 1 s , t = 7 s for
the first row from left to right, t = 12.5 s , t = 19 s for the second row from left to right, and
t = 24 s , t = 30 s for the third row from left to right. The horizontal axis is x (m) and the
vertical axis is the interface height h(x, t) .
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Figure 9: First row: h1u1 + h2u2 at t = 30sec . Second row: h1 + h2 − d at x = .5m versus
time. Third row: h1u1 + h2u2 at x = .5m versus time.

the governing hyperbolic system (1.1) with q(t) 6= 0. The boundary conditions at the vessel
ends are the no flow conditions (5.1).

Differentiating the constraint equation h1(x, t) + h2(x, t) = d twice with respect to time
and using the mass and momentum equations in (1.1) gives the following equation for the
pressure gradient at the rigid-lid,

px =
ρ1ρ2

ρ2h1 + ρ1h2

(
−
(
h1u

2
1 + 1

2
gh2

1 + h2u
2
2 + 1

2
gh2

2 + rgh1h2

)
x
− g′h1h2x − dq̈ −Qt

)
,

(6.1)
where Qt = 0 with the rigid wall boundary conditions. The idea is to treat the pressure
gradient the same as in the previous sections and use a fractional step approach for the q̈
term in (6.1) and the explicit time dependent terms in the momentum equations in (1.1).
The jump in the flux vectors is computed as in (5.6). After each time step of the hyper-
bolic problem a time step is taken in which the momentum equations are adjusted due to
the prescribed horizontal acceleration. Given h1 , h2 , u1 and u2 at time level n , apply
the f-wave-propagation finite volume method to update these over time ∆t by solving the
inhomogeneous hyperbolic system (1.1) without the q̈ terms in the momentum equations
and call the new values h?1 , h?2 , u?1 and u?2 . Then update the star values to hn+1

1 , hn+1
2 ,
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un+1
1 and un+1

2 by solving the equations

∂

∂t
(ρ1h1) = 0 ,

∂

∂t
(ρ1h1u1) =

ρ1ρ2h1

ρ2h1 + ρ1h2

(dq̈ +Qt)− ρ1h1q̈ ,

∂

∂t
(ρ2h2) = 0 ,

∂

∂t
(ρ2h2u2) =

ρ1ρ2h2

ρ2h1 + ρ1h2

(dq̈ +Qt)− ρ2h2q̈ .

(6.2)

For the first simulation take the initial conditions as

h1 (x, 0) = .07m, h2 (x, 0) = .05m for 0 ≤ x < .5 ,

h1 (x, 0) = .06m, h2 (x, 0) = .06m for .5 ≤ x ≤ 1 ,

with the fluids taken to be quiescent at t = 0. The input parameters are

ρ1 = 900 kg/m3 , ρ2 = 1000 kg/m3 , L = 1m,

∆x = .01m, ∆t = .001 sec , g = 9.81m/sec2 ,

and take the prescribed surge forcing as q(t) = ε sinωt with ε = .01 and ω = .55294 rad/sec .
Figure 10 shows the snapshots of the computed wave profiles up to 30sec . The numerical
solutions of the presented solver are compared with the Roe-type f-wave finite volume solver
of [3] which is developed for the Boonkasame-Milewski two-layer shallow interfacial sloshing
equations with an extra prescribed surge forcing function added into their equations. Figure
10 shows that the numerical solutions resulting from both solvers are in good agreement.
The first row in Figure 11 shows h1u1 + h2u2 at t = 30sec , the second row shows the error
in h1 + h2 − d = 0 at x = .5m versus time which is to the order of 10−4 , and the third row
shows the error in h1u1 + h2u2 = 0 at x = .5m versus time which is to the order of 10−5 .
Our observation shows that the errors remain bounded after 3× 104 time steps.

A second simulation is shown in Figure 12. The initial conditions are

h1 (x, 0) = .08m, h2 (x, 0) = .04m for 0 ≤ x < .5 ,

h1 (x, 0) = .06m, h2 (x, 0) = .06m for .5 ≤ x ≤ 1 .

and the fluids are taken to be quiescent at t = 0. Take the input parameters as

ρ1 = 800 kg/m3 , ρ2 = 1000 kg/m3 , L = 1m,

∆x = .01m, ∆t = .001 sec , g = 9.81m/sec2 ,

and take the prescribed surge forcing as q(t) = ε sinωt with ε = .01 and ω = .4017rad/sec .
Figure 12 shows the snapshots of the computed wave profiles up to 30sec which are compared
with the numerical solutions of the Roe-type f-wave finite volume solver of [3]. Numerical
results are in good agreement.
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Figure 10: The interface profile for the sloshing waves with prescribed surge forcing. Snap-
shots of the wave profile at t = 2 s , t = 8 s for the first row from left to right, t = 12 s ,
t = 19 s for the second row from left to right, and t = 24 s , t = 30 s for the third row from
left to right. The horizontal axis is x (m) and the vertical axis is the interface height h(x, t) .
Numerical solutions of the Roe-type f-wave finite volume solver of [3] are depicted in dashed
red line.

Figure 11: First row: h1u1 +h2u2 at t = 30sec . Second row: h1 +h2− d at x = .5m versus
time. Third row: h1u1 + h2u2 at x = .5m versus time.
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Figure 12: Sloshing shallow interfacial waves with prescribed surge forcing for two fluids of
densities ρ1 = 800 kg/m3 and ρ2 = 1000 kg/m3 . Snapshots of the wave profile at t = 2 s ,
t = 8 s for the first row from left to right, t = 12 s , t = 19 s for the second row from left to
right, and t = 24 s , t = 30 s for the third row from left to right. The horizontal axis is x (m)
and the vertical axis is the interface height h(x, t) . Numerical solutions of the Roe-type
f-wave finite volume solver of [3] are depicted in dashed red line.

7 Numerical simulations with open boundary condi-

tions at x = 0, L

In this section, results of the numerical simulations are presented for the case where the
forcing is absent, q(t) = 0, and the boundaries at x = 0, L are open.

First linear simulations are presented for validation, and compared to the exact linear
solutions derived in §4, and then fully nonlinear solutions are presented.

7.1 Linear simulations with influx-efflux boundary conditions

For linear simulations with the influx-efflux boundary conditions, the pressure gradient (4.3)
is decomposed into two parts

∂p̃

∂x
=

ρ1ρ2

ρ2h0
1 + ρ1h0

2

(
−gh0

2

(
∂h̃2

∂x
+ r

∂h̃1

∂x

))
− ρ1ρ2

ρ2h0
1 + ρ1h0

2

Qt . (7.1)

The first part, which is the same as (5.2), would be considered in the jump in the flux vectors
δ like in (5.3), and for the explicit time dependent term a fractional step approach is used
such that after each time step of the hyperbolic problem a time step is taken in which the
momentum equations are adjusted due to influx-efflux boundary conditions. Given h̃1 , h̃2 ,
ũ1 and ũ2 at time level n , apply the f-wave-propagation finite volume method to update
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Figure 13: Snapshots of the wave profile at t = 2 s , t = 7 s for the first row from left to
right, t = 12 s , t = 19 s for the second row from left to right, and t = 24 s , t = 30 s for
the third row from left to right. The horizontal axis is x (m) and the vertical axis is the
interface height h(x, t) . The numerical solution is shown in solid line and the exact solution
in dashed red line. The top and bottom lines in each subplot represent the rigid walls.

these over time ∆t by solving the inhomogeneous linear hyperbolic system (4.1) without the

Qt term in the pressure gradient and call the new values h̃?1 , h̃?2 , ũ?1 and ũ?2 . Then update

the star values to h̃n+1
1 , h̃n+1

2 , ũn+1
1 and ũn+1

2 by solving the equations

∂

∂t

(
ρ1h̃1

)
= 0 ,

∂

∂t

(
ρ1h

0
1ũ1

)
=

h0
1ρ1ρ2

ρ2h0
1 + ρ1h0

2

Qt ,

∂

∂t

(
ρ2h̃2

)
= 0 ,

∂

∂t

(
ρ2h

0
2ũ2

)
=

h0
2ρ1ρ2

ρ2h0
1 + ρ1h0

2

Qt .

(7.2)

The first simulation is a comparison with the exact oscillatory solution (4.8). Take the
input parameters as

F = .07 , G = .04 , ω = .03611 rad/sec , ρ1 = 900 kg/m3 , ρ2 = 1000 kg/m3 ,

L = 1m, h0
1 = .04m, h0

2 = .04m, ∆x = .01m,

∆t = .001 sec , g = 9.81m/sec2 , ε = .005 .

Figure 13 shows the snapshots of the computed and exact wave profiles at different times.
The numerical and exact solutions are in good agreement. The first row in Figure 14 shows
h0

1ũ1 +h0
2ũ2−Q at t = 30sec , the second row shows the errors in conservation of the rigid-lid
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Figure 14: First row: h0
1ũ1 +h0

2ũ2−Q at t = 30sec . Second row: h̃1 + h̃2 at x = .5m versus
time. Third row: h0

1ũ1 + h0
2ũ2 −Q at x = .5m versus time.

constraint h̃1 + h̃2 = 0 at x = .5m versus time, and the third row shows h0
1ũ1 +h0

2ũ2−Q = 0
at x = .5m versus time. Our observation shows that the numerical errors remain bounded
after 3× 104 time steps. Additional simulations are shown in the report [2].

7.2 Nonlinear simulations with influx-efflux boundary conditions

Similar to linear simulations with the influx-efflux boundary conditions, the pressure gradient
(5.5) for the nonlinear calculations is decomposed into two parts

px =
ρ1ρ2

ρ2h1 + ρ1h2

(
−
(
h1u

2
1 + 1

2
gh2

1 + h2u
2
2 + 1

2
gh2

2 + rgh1h2

)
x
− g′h1h2x

)
− ρ1ρ2

ρ2h1 + ρ1h2

Qt .

(7.3)
The first part is considered in the jump in the flux vectors δ like in (5.6), and for the
explicit time dependent term a fractional step approach is used such that after each time
step of the hyperbolic problem a time step is taken in which the momentum equations are
adjusted due to influx-efflux boundary conditions. Given hn1 , hn2 , un1 and un2 at time level n ,
apply the f-wave-propagation finite volume method to update these over time ∆t by solving
the inhomogeneous nonlinear hyperbolic system (1.1) without the Qt term in the pressure
gradient and call the new values h?1 , h?2 , u?1 and u?2 . Then update the star values to hn+1

1 ,
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Figure 15: Snapshots of the wave profile at t = 2 s , t = 7 s for the first row from left to
right, t = 12 s , t = 19 s for the second row from left to right, and t = 24 s , t = 30 s for
the third row from left to right. The horizontal axis is x (m) and the vertical axis is the
interface height h(x, t) . The top and bottom lines in each subplot represent the rigid walls.

hn+1
2 , un+1

1 and un+1
2 by solving the equations

∂

∂t
(ρ1h1) = 0 ,

∂

∂t
(ρ1h1u1) =

ρ1ρ2h1

ρ2h1 + ρ1h2

Qt ,

∂

∂t
(ρ2h2) = 0 ,

∂

∂t
(ρ2h2u2) =

ρ1ρ2h2

ρ2h1 + ρ1h2

Qt .

(7.4)

For the first simulation set r = .7 and take the initial conditions as

h1 (x, 0) = .04m, h2 (x, 0) = .07m for 0 ≤ x < .5 ,

h1 (x, 0) = .06m, h2 (x, 0) = .05m for .5 ≤ x ≤ 1 .

The fluids are taken to be quiescent at t = 0. Take the input parameters as

ρ1 = 700 kg/m3 , ρ2 = 1000 kg/m3 , L = 1m,

∆x = .01m, ∆t = .001 sec , g = 9.81m/sec2 ,

and set ε = .005 and ω = .0955 rad/sec with periodic boundary conditions. Denoting the
interior values of the cell averages by Qn

1 , . . . ,Q
n
N then the ghost cell values are Qn

0 = Qn
N ,

Qn
−1 = Qn

N−1 , Qn
N+1 = Qn

1 and Qn
N+2 = Qn

2 . Figure 15 shows the snapshots of the computed
wave profiles up to 30sec . The first row in Figure 16 shows h1u1 + h2u2 −Q at t = 30sec ,
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Figure 16: First row: h1u1 + h2u2 −Q at t = 30sec . Second row: h1 + h2 − d at x = .5m
versus time. Third row: h1u1 + h2u2 −Q at x = .5m versus time.

the second row shows the errors in h1 + h2 − d = 0 at x = .5m versus time, and the third
row shows h1u1 + h2u2 − Q = 0 at x = .5m versus time. Our observation shows that the
numerical errors remain bounded after 3× 104 time steps.

A second simulation is shown in Figure 17. Take the initial conditions and input param-
eters the same as the previous simulation but with ρ1 = 600kg/m3 . Let Q(t) = ε sinωt
with ε = .005 and ω = .1149 rad/sec , and consider the boundary conditions to be periodic.
Figure 17 shows snapshots of the computed wave profiles up to 30sec .

8 Concluding remarks

The paper is devoted to the application of the high-resolution f-wave-propagation finite
volume methods to the problem of two-layer inviscid, incompressible and immiscible shallow-
water flows in a moving vessel with a rigid-lid. The main novel feature of the methods
presented in this paper is the inclusion of the exact expression for the pressure gradient at
the rigid-lid into the numerical calculations. This is done by considering the pressure gradient
as a source term which is included in the jump within the flux vectors before decomposing the
differences into waves propagating out from each grid cell interface. The pressure gradient
is related to the volume flux that is set by boundary conditions on the horizontal velocities.
The time dependent volume flux terms are handled via a fractional step approach. The same
strategy is used to solve the two-layer shallow water sloshing waves with prescribed surge
forcing function.

Since the wetting and drying phenomenon is very important in the efficiency of the ocean
wave energy converters like the OWEL WEC, the way forward is to modify the current
f-wave finite volume solvers to include wetting and drying at the rigid-lid. The interesting
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Figure 17: Snapshots of the wave profile at t = 2 s , t = 7 s for the first row from left to
right, t = 12 s , t = 19 s for the second row from left to right, and t = 24 s , t = 30 s for
the third row from left to right. The horizontal axis is x (m) and the vertical axis is the
interface height h(x, t) . The top and bottom lines in each subplot represent the rigid walls.

point is that the volume flux which appears in the expression for the pressure gradient at
the rigid-lid would play an important role in modelling the Power Take Off (PTO) system
of the OWEL WEC. So the goal is to study how best to handle the time dependent source
terms. One approach is to use the fractional step methods used in this paper.

Another feature of importance in WECs is the dynamic coupling between the vessel
motion and the interior fluid motion. The current high-resolution f-wave finite volume solvers
can be coupled to an ODE solver to study the dynamic coupling between the horizontal
vehicle motion with a rigid-lid and the interior two-layer shallow-water sloshing. This coupled
dynamics is discussed in [4].
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