605 research outputs found

    Unaltered V̇O2 kinetics despite greater muscle oxygenation during heavy-intensity two-legged knee extension versus cycle exercise in humans

    Get PDF
    Relative perfusion of active muscles is greater during knee extension ergometry (KE) than cycle ergometry (CE). This provides the opportunity to investigate the effects of increased O₂ delivery (Q̇O₂) on deoxygenation heterogeneity among quadriceps muscles and pulmonary V̇O₂ kinetics. Using time-resolved near-infrared spectroscopy, we hypothesized that compared with CE the superficial vastus lateralis (VL), superficial rectus femoris and deep VL in KE would have 1) a smaller amplitude of the exercise-induced increase in deoxy[Hb+Mb] (related to the balance between V̇O₂ and Q̇O₂); 2) a greater amplitude of total[Hb+Mb] (related to the diffusive O₂ conductance); 3) a greater homogeneity of regional muscle deoxy[Hb+Mb]; and 4) no difference in pulmonary V̇O₂ kinetics. Eight participants performed square-wave KE and CE exercise from 20 W to heavy work rates. Deoxy[Hb+Mb] amplitude was less for all muscle regions in KE (P<0.05: superficial, KE 17-24 vs. CE 19-40; deep, KE 19 vs. CE 26 μM). Further, the amplitude of total[Hb+Mb] was greater for KE than CE at all muscle sites (P<0.05: superficial, KE 7-21 vs. CE 1-16; deep, KE 11 vs. CE -3 μM). Although the amplitude and heterogeneity of deoxy[Hb+Mb] was significantly lower in KE than CE during the first minute of exercise, the pulmonary V̇O₂ kinetics was not different for KE and CE. These data show that the microvascular Q̇O₂ to V̇O₂ ratio, and thus tissue oxygenation, was greater in KE than CE. This suggests that pulmonary and muscle V̇O₂ kinetics in young healthy humans are not limited by Q̇O₂ during heavy-intensity cycling

    Absence of platelet phenotype in mice lacking the motor protein myosin Va.

    Get PDF
    BACKGROUND: The motor protein myosin Va plays an important role in the trafficking of intracellular vesicles. Mutation of the Myo5a gene causes Griscelli syndrome type 1 in humans and the dilute phenotype in mice, which are both characterised by pigment dilution and neurological defects as a result of impaired vesicle transport in melanocytes and neuroendocrine cells. The role of myosin Va in platelets is currently unknown. Rab27 has been shown to be associated with myosin Va cargo vesicles and is known to be important in platelet dense granule biogenesis and secretion, a crucial event in thrombus formation. Therefore, we hypothesised that myosin Va may regulate granule secretion or formation in platelets. METHODOLOGY/PRINCIPAL FINDINGS: Platelet function was studied in vitro using a novel Myo5a gene deletion mouse model. Myo5a(-/-) platelets were devoid of myosin Va, as determined by immunoblotting, and exhibited normal expression of surface markers. We assessed dense granule, α-granule and lysosomal secretion, integrin α(IIb)β(3) activation, Ca(2+) signalling, and spreading on fibrinogen in response to collagen-related peptide or the PAR4 agonist, AYPGKF in washed mouse platelets lacking myosin Va or wild-type platelets. Surprisingly, Myo5a(-/-) platelets showed no significant functional defects in these responses, or in the numbers of dense and α-granules expressed. CONCLUSION: Despite the importance of myosin Va in vesicle transport in other cells, our data demonstrate this motor protein has no non-redundant role in the secretion of dense and α-granules or other functional responses in platelets

    Black Stork Down: Military Discourses in Bird Conservation in Malta

    Get PDF
    Tensions between Maltese hunters and bird conservation NGOs have intensified over the past decade. Conservation NGOs have become frustrated with the Maltese State for conceding to the hunter lobby and negotiating derogations from the European Union’s Bird Directive. Some NGOs have recently started to organize complex field-operations where volunteers are trained to patrol the landscape, operate drones and other surveillance technologies, detect illegalities, and lead police teams to arrest poachers. We describe the sophisticated military metaphors which conservation NGOs have developed to describe, guide and legitimize their efforts to the Maltese public and their fee-paying members. We also discuss why such groups might be inclined to adopt these metaphors. Finally, we suggest that anthropological studies of discourse could help understand delicate contexts such as this where conservation NGOs, hunting associations and the State have ended in political deadlock

    Mechanisms of attenuation of pulmonary V'O_{2} slow component in humans after prolonged endurance training

    Get PDF
    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2 ) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean\ub1SD: age 22.33\ub11.44 years, V'O2peak 3198\ub1458 mL \ub7 min-1 ) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by 3c5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of \u3c4 p of the V'O2 on-kinetics (30.1\ub15.9 s vs. 25.4\ub11.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by 3c5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the "additional" ATP usage rising gradually during heavy-intensity exercise

    Effects of isopropanol on collagen fibrils in new parchment

    Get PDF
    Background: Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results: It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions: This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts

    Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos

    Get PDF
    Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape. Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally. Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development

    Chedoke Arm and Hand Activity Inventory-9 (CAHAI-9): Perceived clinical utility within 14 days of stroke

    Get PDF
    Purpose: The Chedoke Arm and Hand Activity Inventory-9 (CAHAI-9) is an activity-based assessment developed to include relevant functional tasks and to be sensitive to clinically important changes in upper limb function. The aim of this study was to explore both therapists' and clients' views on the clinical utility of CAHAI-9 within 14 days of stroke. Method: Twenty-one occupational therapists actively working in stroke settings were recruited by convenience sampling from 8 hospitals and participated in semistructured focus groups. Five clients within 14 days of stroke were recruited by consecutive sampling from 1 metropolitan hospital and participated in structured individual interviews. The transcripts were analyzed thematically. Results: Six themes emerged from the focus groups and interviews: collecting information, decisions regarding client suitability, administration and scoring, organizational demands, raising awareness, and clients' perceptions of CAHAI-9 utility. All therapists agreed CAHAI-9 was suited for the stroke population and assisted identification of client abilities or difficulties within functional contexts. Opinions varied as to whether CAHAI-9 should be routinely administered with clients who had mild and severe upper limb deficits, but therapists agreed it was appropriate for clients with moderate deficits. Therapists made suggestions regarding refinement of the scoring and training to increase utility. All clients with stroke felt that the assessment provided reassurance regarding their recovery. Conclusion: The findings indicate that CAHAI-9 shows promise as an upper limb ability assessment for clients within 14 days of stroke

    The Salmonella Genomic Island 1 Is Specifically Mobilized In Trans by the IncA/C Multidrug Resistance Plasmid Family

    Get PDF
    BACKGROUND: The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency <10(-9)). In our collection, ESBL gene-carrying plasmids were mainly from the IncHI2 and I1 groups and thus were unable to mobilize SGI1. However, the horizontal transfer of SGI1 was shown to be specifically mediated by conjugative helper plasmids of the broad-host-range IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. CONCLUSIONS/SIGNIFICANCE: The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives
    corecore