552 research outputs found

    Detection of the complement fragment C5a in inflammatory exudates from the rabbit peritoneal cavity using radioimmunoassay.

    Get PDF
    We describe a radioimmunoassay for rabbit C5a and its use to obtain evidence of extravascular C5a generation in two inflammatory reactions in the peritoneal cavity. These observations, together with the potent activity of C5a in inducing increased microvascular permeability involving circulating PMN leukocytes, strengthen the case for considering C5a an important inflammatory mediator. These findings offer an explanation for the many different experimental inflammatory reactions where oedema formation can be suppressed either by systemic depletion of complement or by depletion of circulating PMN leukocytes

    Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo.

    Get PDF
    Experiments were designed to study the effect of systemically administered IL-5 on local eosinophil accumulation induced by the intradermal injection of the chemokine eotaxin in the guinea pig. Intravenous interleukin-5 (IL-5) stimulated a rapid and dramatic increase in the numbers of accumulating eosinophils induced by i.d.-injected eotaxin and, for comparison, leukotriene B4. The numbers of locally accumulating eosinophils correlated directly with a rapid increase in circulating eosinophils: circulating eosinophil numbers were 13-fold higher 1 h after intravenous IL-5 (18.3 pmol/kg). This increase in circulating cells corresponded with a reduction in the number of displaceable eosinophils recovered after flushing out the femur bone marrow cavity. Intradermal IL-5, at the doses tested, did not induce significant eosinophil accumulation. We propose that these experiments simulate important early features of the tissue response to local allergen exposure in a sensitized individual, with eosinophil chemoattractant chemokines having an important local role in eosinophil recruitment from blood microvessels, and IL-5 facilitating this process by acting remotely as a hormone to stimulate the release into the circulation of a rapidly mobilizable pool of bone marrow eosinophils. This action of IL-5 would be complementary to the other established activities of IL-5 that operate over a longer time course

    Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation.

    Get PDF
    Eosinophil accumulation is a prominent feature of allergic inflammatory reactions, such as those occurring in the lung of the allergic asthmatic, but the endogenous chemoattractants involved have not been identified. We have investigated this in an established model of allergic inflammation, using in vivo systems both to generate and assay relevant activity. Bronchoalveolar lavage (BAL) fluid was taken from sensitized guinea pigs at intervals after aerosol challenge with ovalbumin. BAL fluid was injected intradermally in unsensitized assay guinea pigs and the accumulation of intravenously injected 111In-eosinophils was measured. Activity was detected at 30 min after allergen challenge, peaking from 3 to 6 h and declining to low levels by 24 h. 3-h BAL fluid was purified using high performance liquid chromatography techniques in conjunction with the skin assay. Microsequencing revealed a novel protein from the C-C branch of the platelet factor 4 superfamily of chemotactic cytokines. The protein, eotaxin, exhibits homology of 53% with human MCP-1, 44% with guinea pig MCP-1, 31% with human MIP-1α, and 26% with human RANTES. Laser desorption time of flight mass analysis gave four different signals (8.15, 8.38, 8.81, and 9.03 kD), probably reflecting differential O-glycosylation. Eotaxin was highly potent, inducing substantial 111In-eosinophil accumulation at a 1-2-pmol dose in the skin, but did not induce significant 111In-neutrophil accumulation. Eotaxin was a potent stimulator of both guinea pig and human eosinophils in vitro. Human recombinant RANTES, MIP-1α, and MCP-1 were all inactive in inducing 111In-eosinophil accumulation in guinea pig skin; however, evidence was obtained that eotaxin shares a binding site with RANTES on guinea pig eosinophils. This is the first description of a potent eosinophil chemoattractant cytokine generated in vivo and suggests the possibility that similar molecules may be important in the human asthmatic lung

    Modulation of TGF-β/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic patients experience exaggerated intimal hyperplasia after endovascular procedures. Recently it has been shown that circulating smooth muscle progenitor cells (SPC) contribute to intimal hyperplasia. We hypothesized that SPC differentiation would be increased in diabetes and focused on modulation of TGF-β/BMP-6 signaling as potential underlying mechanism.</p> <p>Methods</p> <p>We isolated SPC from C57Bl/6 mice with streptozotocin-induced diabetes and controls. SPC differentiation was evaluated by immunofluorescent staining for αSMA and collagen Type I. SPC mRNA expression of TGF-β and BMP-6 was quantified using real-time PCR. Intima formation was assessed in cuffed femoral arteries. Homing of bone marrow derived cells to cuffed arterial segments was evaluated in animals transplanted with bone marrow from GFP-transgenic mice.</p> <p>Results</p> <p>We observed that SPC differentiation was accelerated and numeric outgrowth increased in diabetic animals (24.6 ± 8.8 vs 8.3 ± 1.9 per HPF after 10 days, p < 0.05). Quantitative real-time PCR showed increased expression of TGF-β and decreased expression of the BMP-6 in diabetic SPC. SPC were MAC-3 positive, indicative of monocytic lineage. Intima formation in cuffed arterial segments was increased in diabetic mice (intima/media ratio 0.68 ± 0.15 vs 0.29 ± 0.06, p < 0.05). In GFP-chimeric mice, bone marrow derived cells were observed in the neointima (4.4 ± 3.3 cells per section) and particularly in the adventitia (43.6 ± 9.3 cells per section). GFP-positive cells were in part MAC-3 positive, but rarely expressed α-SMA.</p> <p>Conclusions</p> <p>In conclusion, in a diabetic mouse model, SPC levels are increased and SPC TGF-β/BMP-6 expression is modulated. Altered TGF-β/BMP-6 expression is known to regulate smooth muscle cell differentiation and may facilitate SPC differentiation. This may contribute to exaggerated intimal hyperplasia in diabetes as bone marrow derived cells home to sites of neointima formation.</p

    A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales

    Get PDF
    Fourier transform infrared (FTIR) spectroscopic data was used to classify wood samples from nine species within the Fagales and Malpighiales using a range of multivariate statistical methods. Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic System Classification (APG II System) was successfully performed using supervised pattern recognition techniques. A methodology for wood sample discrimination was developed using both sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to discriminate order and family, respectively. In the species studied FTIR in combination with multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification

    Guidelines for the deployment and implementation of manufacturing scheduling systems

    Full text link
    It has frequently been stated that there exists a gap between production scheduling theory and practice. In order to put theoretical findings into practice, advances in scheduling models and solution procedures should be embedded into a piece of software - a scheduling system - in companies. This results in a process that entails (1) determining its functional features, and (2) adopting a successful strategy for its development and deployment. In this paper we address the latter question and review the related literature in order to identify descriptions and recommendations of the main aspects to be taken into account when developing such systems. These issues are then discussed and classified, resulting in a set of guidelines that can help practitioners during the process of developing and deploying a scheduling system. In addition, identification of these issues can provide some insights to drive theoretical scheduling research towards those topics more in demand by practitioners, and thus help to close the aforementioned gap.Framiñan Torres, JM.; Ruiz García, R. (2012). Guidelines for the deployment and implementation of manufacturing scheduling systems. International Journal of Production Research. 50(7):1799-1812. doi:10.1080/00207543.2011.564670S17991812507Baek, D. H. (1999). A visualized human-computer interactive approach to job shop scheduling. International Journal of Computer Integrated Manufacturing, 12(1), 75-83. doi:10.1080/095119299130489Comesaña Benavides, J. A., & Carlos Prado, J. (2002). Creating an expert system for detailed scheduling. International Journal of Operations & Production Management, 22(7), 806-819. doi:10.1108/01443570210433562Bensana, E. 1986. An expert-system approach to industrial job-shop scheduling. In: Proceedings of the 1986 IEEE international conference on robotics and automation. 1986. Vol. 3, pp.1645–1650.Berglund, M., & Karltun, J. (2007). Human, technological and organizational aspects influencing the production scheduling process. International Journal of Production Economics, 110(1-2), 160-174. doi:10.1016/j.ijpe.2007.02.024Besbes, W., Teghem, J., & Loukil, T. (2010). Scheduling hybrid flow shop problem with non-fixed availability constraints. European J. of Industrial Engineering, 4(4), 413. doi:10.1504/ejie.2010.035652Bhattacharyya, S., & Koehler, G. J. (1998). Learning by Objectives for Adaptive Shop-Floor Scheduling. Decision Sciences, 29(2), 347-375. doi:10.1111/j.1540-5915.1998.tb01580.xBitran, G. R., & Tirupati, D. (1988). OR Practice—Development and Implementation of a Scheduling System for a Wafer Fabrication Facility. Operations Research, 36(3), 377-395. doi:10.1287/opre.36.3.377Buxey, G. (1989). Production scheduling: Practice and theory. European Journal of Operational Research, 39(1), 17-31. doi:10.1016/0377-2217(89)90349-4Chen, J.-F. (2004). Unrelated parallel machine scheduling with secondary resource constraints. The International Journal of Advanced Manufacturing Technology, 26(3), 285-292. doi:10.1007/s00170-003-1622-1Collinot, A., Le Pape, C., & Pinoteau, G. (1988). SONIA: A knowledge-based scheduling system. Artificial Intelligence in Engineering, 3(2), 86-94. doi:10.1016/0954-1810(88)90024-6Cowling, P. (2003). A flexible decision support system for steel hot rolling mill scheduling. Computers & Industrial Engineering, 45(2), 307-321. doi:10.1016/s0360-8352(03)00038-xDudek, R. A., Panwalkar, S. S., & Smith, M. L. (1992). The Lessons of Flowshop Scheduling Research. Operations Research, 40(1), 7-13. doi:10.1287/opre.40.1.7Dumond, E. J. (2005). Understanding and using the capabilities of finite scheduling. Industrial Management & Data Systems, 105(4), 506-526. doi:10.1108/02635570510592398Fox, M. S., & Smith, S. F. (1984). ISIS?a knowledge-based system for factory scheduling. Expert Systems, 1(1), 25-49. doi:10.1111/j.1468-0394.1984.tb00424.xFraminan, J. M., & Ruiz, R. (2010). Architecture of manufacturing scheduling systems: Literature review and an integrated proposal. European Journal of Operational Research, 205(2), 237-246. doi:10.1016/j.ejor.2009.09.026Freed, T., Doerr, K. H., & Chang, T. (2007). In-house development of scheduling decision support systems: case study for scheduling semiconductor device test operations. International Journal of Production Research, 45(21), 5075-5093. doi:10.1080/00207540600818351Gao, C and Tang, L. 2008. A decision support system for color-coating line in steel industry. In: Proceedings of the IEEE international conference on automation and logistics, ICAL 2008. 2008. pp.1463–1468.Grant, T. J. (1986). Lessons for O.R. from A.I.: A Scheduling Case Study. Journal of the Operational Research Society, 37(1), 41-57. doi:10.1057/jors.1986.7Graves, S. C. (1981). A Review of Production Scheduling. Operations Research, 29(4), 646-675. doi:10.1287/opre.29.4.646HALSALL, D. N., MUHLEMANN, A. P., & PRICE, D. H. R. (1994). A review of production planning and scheduling in smaller manufacturing companies in the UK. Production Planning & Control, 5(5), 485-493. doi:10.1080/09537289408919520Higgins, P. G. (1996). Interaction in hybrid intelligent scheduling. International Journal of Human Factors in Manufacturing, 6(3), 185-203. doi:10.1002/(sici)1522-7111(199622)6:33.0.co;2-6Kanet, J. J., & Adelsberger, H. H. (1987). Expert systems in production scheduling. European Journal of Operational Research, 29(1), 51-59. doi:10.1016/0377-2217(87)90192-5Kathawala, Y., & Allen, W. R. (1993). Expert Systems and Job Shop Scheduling. International Journal of Operations & Production Management, 13(2), 23-35. doi:10.1108/01443579310025286Kerr, R. M. (1992). Expert systems in production scheduling: Lessons from a failed implementation. Journal of Systems and Software, 19(2), 123-130. doi:10.1016/0164-1212(92)90063-pKnolmayer, G., Mertens, P., & Zeier, A. (2002). Supply Chain Management Based on SAP Systems. doi:10.1007/978-3-540-24816-3Leachman, R. C., Benson, R. F., Liu, C., & Raar, D. J. (1996). IMPReSS: An Automated Production-Planning and Delivery-Quotation System at Harris Corporation—Semiconductor Sector. Interfaces, 26(1), 6-37. doi:10.1287/inte.26.1.6MACCARTHY, B. L., & LIU, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59-79. doi:10.1080/00207549308956713McKay, K. N., & Black, G. W. (2007). The evolution of a production planning system: A 10-year case study. Computers in Industry, 58(8-9), 756-771. doi:10.1016/j.compind.2007.02.002McKay, K. N., Safayeni, F. R., & Buzacott, J. A. (1988). Job-Shop Scheduling Theory: What Is Relevant? Interfaces, 18(4), 84-90. doi:10.1287/inte.18.4.84McKay, K. N., Morton, T. E., Ramnath, P., & Wang, J. (2000). ?Aversion dynamics? scheduling when the system changes. Journal of Scheduling, 3(2), 71-88. doi:10.1002/(sici)1099-1425(200003/04)3:23.0.co;2-0MCKAY, K., PINEDO, M., & WEBSTER, S. (2009). PRACTICE-FOCUSED RESEARCH ISSUES FOR SCHEDULING SYSTEMS*. Production and Operations Management, 11(2), 249-258. doi:10.1111/j.1937-5956.2002.tb00494.xMissbauer, H., Hauber, W., & Stadler, W. (2009). A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. International Journal of Production Research, 47(15), 4147-4172. doi:10.1080/00207540801950136Numao, M and Morishita, S. 1989. A scheduling environment for steel-making processes. In: Proceedings of the 5th conference on artificial intelligence applications. 1989. pp.279–286.Olhager, J., & Rapp, B. (1995). Operations Research Techniques in Manufacturing Planning and Control Systems. International Transactions in Operational Research, 2(1), 29-43. doi:10.1111/j.1475-3995.1995.tb00003.xPerez-Gonzalez, P., & Framinan, J. M. (2009). Scheduling permutation flowshops with initial availability constraint: Analysis of solutions and constructive heuristics. Computers & Operations Research, 36(10), 2866-2876. doi:10.1016/j.cor.2008.12.018Pinedo, M., & Yen, B. P.-C. (1997). Annals of Operations Research, 70, 359-378. doi:10.1023/a:1018986524234Portougal, V., & Robb, D. J. (2000). Production Scheduling Theory: Just Where Is It Applicable? Interfaces, 30(6), 64-76. doi:10.1287/inte.30.6.64.11623Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Management, 44(3), 316-329. doi:10.1109/17.618173Steffen, MS. 1986. A survey of artificial intelligence-based scheduling systems. In: Proceedings of the fall industrial engineering conference. 1986.Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. Management Science, 38(10), 1495-1509. doi:10.1287/mnsc.38.10.1495Tang, L., & Wang, G. (2008). Decision support system for the batching problems of steelmaking and continuous-casting production. Omega, 36(6), 976-991. doi:10.1016/j.omega.2007.11.002T’kindt, V., Billaut, J.-C., Bouquard, J.-L., Lenté, C., Martineau, P., Néron, E., … Tacquard, C. (2005). The e-OCEA project: towards an Internet decision system for scheduling problems. Decision Support Systems, 40(2), 329-337. doi:10.1016/j.dss.2004.04.001Wiers, VCS. 1997. Human–computer interaction in production scheduling: Analysis and design of decision support systems for production scheduling tasks. Ph.D. Thesis, Technische Universiteit Eindhoven, NetherlandsWiers, V. C. S. (2002). A case study on the integration of APS and ERP in a steel processing plant. Production Planning & Control, 13(6), 552-560. doi:10.1080/09537280210160321Wiers, V. C. S., & Van Der Schaaf, T. W. (1997). A framework for decision support in production scheduling tasks. Production Planning & Control, 8(6), 533-544. doi:10.1080/095372897234876Zhang, L., Krishnamurthy, A., Malmborg, C. J., & Heragu, S. S. (2009). Variance-based approximations of transaction waiting times in autonomous vehicle storage and retrieval systems. European J. of Industrial Engineering, 3(2), 146. doi:10.1504/ejie.2009.02360

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Development of a Finite Volume Inter-cell Polynomial Expansion Method for the Neutron Diffusion Equation

    Full text link
    Heterogeneous nuclear reactors require numerical methods to solve the neutron diffusion equation (NDE) to obtain the neutron flux distribution inside them, by discretizing the heterogeneous geometry in a set of homogeneous regions. This discretization requires additional equations at the inner faces of two adjacent cells: neutron flux and current continuity, which imply an excess of equations. The finite volume method (FVM) is suitable to be applied to NDE, because it can be easily applied to any mesh and it is typically used in the transport equations due to the conservation of the transported quantity within the volume. However, the gradient and face-averaged values in the FVM are typically calculated as a function of the cell-averaged values of adjacent cells. So, if the materials of the adjacent cells are different, the neutron current condition could not be accomplished. Therefore, a polynomial expansion of the neutron flux is developed in each cell for assuring the accomplishment of the flux and current continuity and calculating both analytically. In this polynomial expansion, the polynomial terms for each cell were assigned previously and the constant coefficients are determined by solving the eigenvalue problem with SLEPc. A sensitivity analysis for determining the best set of polynomial terms is performed.This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte [grant number FPU13/01009]; the Spanish Ministerio de Ciencia e Innovacion [project number ENE2014-59442-P], [project number ENE2012-34585]; the Generalitat Valenciana [project number PROMETEOII/2014/008]; the Universitat Politecnica de Valencia [project number UPPTE/2012/118]; and the Spanish Ministerio de Economia y Competitividad [project number TIN2013-41049-P].Bernal García, Á.; Román Moltó, JE.; Miró Herrero, R.; Ginestar Peiro, D.; Verdú Martín, GJ. (2016). Development of a Finite Volume Inter-cell Polynomial Expansion Method for the Neutron Diffusion Equation. Journal of Nuclear Science and Technology. 53(8):1212-1223. https://doi.org/10.1080/00223131.2015.1102661S1212122353

    The role of a firm's absorptive capacity and the technology transfer process in clusters: How effective are technology centres in low-tech clusters?

    Full text link
    This paper analyses how the internal resources of small- and medium-sized enterprises determine access (learning processes) to technology centres (TCs) or industrial research institutes (innovation infrastructure) in traditional low-tech clusters. These interactions basically represent traded (market-based) transactions, which constitute important sources of knowledge in clusters. The paper addresses the role of TCs in low-tech clusters, and uses semi-structured interviews with 80 firms in a manufacturing cluster. The results point out that producer–user interactions are the most frequent; thus, the higher the sector knowledge-intensive base, the more likely the utilization of the available research infrastructure becomes. Conversely, the sectors with less knowledge-intensive structures, i.e. less absorptive capacity (AC), present weak linkages to TCs, as they frequently prefer to interact with suppliers, who act as transceivers of knowledge. Therefore, not all the firms in a cluster can fully exploit the available research infrastructure, and their AC moderates this engagement. In addition, the existence of TCs is not sufficient since the active role of a firm's search strategies to undertake interactions and conduct openness to available sources of knowledge is also needed. The study has implications for policymakers and academia
    corecore