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Abstract 14 

Fourier Transform Infrared (FTIR) spectroscopic data was used to classify wood samples from nine 15 

species within the Fagales and Malpighiales using a range of multivariate statistical methods. 16 

Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic 17 

System Classification (APG II System) was successfully performed using Supervised Pattern 18 

Recognition techniques. A methodology for wood sample discrimination was developed using both 19 

sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to 20 

discriminate order and family, respectively. In the species studied FTIR in combination with 21 

Multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and 22 

guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification. 23 

Introduction 24 

The polymeric composition of wood 25 

Wood is composed mainly of cellulose, hemicellulose, and lignin where the cellulose microfibrils are 26 

embedded within a matrix of hemicelluloses and lignin (Sjostrom 1993). Cellulose is the main 27 

component of wood and the skeletal polysaccharide of cell walls (Barnett and Jeronimidis 2003). 28 

Cellulose chains are aggregated together by inter- and intramolecular hydrogen bonds to form 29 

microfibrils with highly ordered (crystalline) and less ordered (amorphous) regions (Martin 2006). On 30 

other hand, hemicelluloses are non-cellulosic polysaccharides. The most important hemicelluloses in 31 

wood cell walls are xylans and glucomannans (Barnett and Jeronimidis 2003). Lignin is a 32 
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macromolecule formed by the polymerization of three phenylpropane monomers, it is highly 33 

heterogeneous and is the most complex structural component of the wood cell wall. Lignin attaches 34 

to cellulose and hemicelluloses by lignin-polysaccharide bonds (Wang et al. 2009); hemicellulose 35 

may be associated with both lignin and cellulose. In Spruce (Picea abies), it has been shown that 36 

xylan is associated with lignin and glucomannan with cellulose (Martin 2006).  37 

There is considerable variation in the composition of wood; it varies at all levels from species to 38 

species, between cell types, and within the cell wall itself (Martin 2006).The underlying factors 39 

controlling wood properties are essentially the result of its chemical composition and their relative 40 

proportion and distribution (Barnett and Jeronimidis 2003).  41 

Cross-sectional variation in the chemical composition of wood: Sapwood vs 42 

Heartwood 43 

The outer region of wood with living parenchyma cells is known as sapwood and the inner region 44 

with only dead cells is termed heartwood - this is often, but not always, a dark colour than the 45 

sapwood due to the presence of various extractives (Ek et al. 2009; Martin 2006). The precise cause 46 

of heartwood formation is not known but it is characterised by the accumulation of polyphenolic 47 

substances in the cells and a general reduction in the moisture content of the wood. In addition to 48 

its colour heartwood may be more aromatic on account of the extractives. The structure of bark is 49 

complicated in comparison with wood (Sjostrom 1993). Its high variability is mainly attributed to its 50 

rich composition in extractives (Ek et al. 2009). 51 

 52 

In a tree considerable differences exist in the hemicellulose content and composition between the 53 

stem, branches, roots and bark (Sjostrom 1993). Heartwood has higher lignin and lower cellulose 54 

content compared to sapwood (Martin 2006; Meinzer et al. 2011). There is a similar trend with tree 55 

height. Hemicelluloses seem to be more concentrated in the juvenile regions and usually decrease in 56 

mature wood regions (Martin 2006). Differences in lignin composition(S/G ratio) were also found 57 

between heartwood and sapwood and with tree height (Barnett and Jeronimidis 2003). Trees with a 58 

decrease in lignin have a proportional increase in cellulose (Callow et al. 2006) while the two 59 

components of holocellulose (i.e., α-cellulose and hemicellulose) tend to vary directly (Stewart et al. 60 

1995). 61 

Infrared spectroscopy 62 

Fourier Transform Infrared (FTIR) Spectroscopy is a rapid, noninvasive, high-resolution analytical tool 63 

for identifying types of chemical bonds in a molecule by producing an infrared absorption spectrum 64 

that is like a molecular “fingerprint” (Shen et al. 2008). However, a single IR spectrum also contains 65 

information about the molecular structure and intermolecular interactions among the individual 66 

sample components (McCann et al. 2001). Infrared spectroscopy has been extensively applied to the 67 

analysis of plant cell walls (Kacuráková et al. 2000). Furthermore, in combination with multivariate 68 

analysis, FTIR has been used for the chemotaxonomic classification of flowering plants such as the 69 

identification and classification of the genus of Camellia using cluster analysis and Principal 70 

Component Analysis (PCA) (Shen et al. 2008), the taxonomic discrimination of three families using a 71 

dendogram based on PCA (Kim et al. 2004) and the differentiation of plants from different genera 72 

using cluster analysis (Gorgulu et al. 2007) (Table 1). In tree species wood has also been analysed 73 

using FTIR spectroscopy to characterize lignin in wood (Obst 1982; Takayama 1997), determine 74 



changes in composition and structure of wood (Stewart et al. 1995), and characterize softwood and 75 

hardwood pulps using Partial Least-Squares analysis (PLS) and PCA (Bjarnestad and Dahlman 2002). 76 

Furthermore, the interaction of wood polymers and differentiation of wood species using Partial 77 

Least-Squares regression has also been investigated (Åkerholm et al. 2001; Hobro et al. 2010). A 78 

recent review by Tsuchikawa (2007) summarizes important findings in the classification of wood 79 

using NIR-FTR spectroscopy and multivariate techniques.  80 

 81 

Chemometrics 82 

Chemometrics is the science of extracting information from chemical systems with the application of 83 

statistical and mathematical methods to chemical data (Gidman et al. 2003) and the most common 84 

ones are based on dimensionality reduction via cluster analysis using Principal Component Analysis 85 

(PCA) and Discriminant Function Analysis (DFA). Multivariate analysis builds on the application of 86 

statistical and mathematical methods, and includes the analysis of data with many observed 87 

variables, as well as the study of systems with many important types of variation (Gottlieb et al. 88 

2004). Multivariate analysis is an inductive analysis, where hypotheses can be set up after having 89 

carried out the computational experiments to identify outlying observations (Gottlieb et al. 2004), 90 

clusters of similar observations and other data structures. The biochemical profiles of FTIR from 91 

whole cell samples are extremely high-density data sets and, consequently, FTIR data must be 92 

analyzed by means of multivariate analysis when multiple whole cell samples are compared (Kim et 93 

al. 2004). 94 

Phylogenetic classification of trees 95 

Trees belongs to seed-bearing plants (Spermatophytae), which are subdivided into gymnosperms 96 

(Gymnospermae) and angiosperms (Angiospermae) (Sjostrom 1993). Based on the APG II System 97 

Classification, the fagales are an order of flowering plants, including some of the best known trees 98 

and containing 8 families and approximately 30 genera and nearly 1000 species. They belong among 99 

the rosids group of dicotyledons. Two of the families of this order are Fagaceae and Betulaceae. On 100 

other hand, Malpighiales is one of the largest orders of flowering plants, containing about 16000 101 

species, approximately 7.8% of the eudicots. Malpighiales is divided in 35 families by APG II system 102 

(APG II 2003). One of them is Salicaceae. Malpighiales and Lamiales are the two large orders whose 103 

phylogeny remains mostly unresolved. The order is very diverse and hard to recognize except with 104 

molecular phylogenetic evidence.   105 

The aim of this work is use the chemical composition of wood extracted from the FTIR data to 106 

discriminate wood samples between order and family, taking groups from the current plant APG II 107 

classification system. 108 

Materials  109 

Branch material was collected from 9 tree species in Lincoln (Lincolnshire, UK). All were members of 110 

the rosid clade; 6 species were from the order fagales and 3 from the order malpighiales (Table 2). 111 

Samples were stored in a dry environment at ambient temperature conditions.  112 



Methods 113 

Sample preparation 114 

Samples, approximately 30 cm in length, were removed from branches from 9 species and then cut 115 

into transverse sections between 5 to 15 mm in thickness using a bandsaw. Two of the transverse 116 

sections were selected at random to represent each tree; it was assumed that there was no variation 117 

in the composition of wood along the branch. The two sections from each tree were taken as 118 

replicates of the same measure in the statistical analysis. Spectra were collected for a total of 256 119 

scans with a resolution of 4 cm-1 between 4000 and 500 cm-1. Spectra were acquired from six 120 

positions across the transverse section from the central pith to the outer bark region including: the 121 

pith, a ring close to the pith, a central ring, a ring close to the bark, the bark, and an arbitrary point in 122 

the sapwood with no visible rings. A total of 12 spectra were recorded for each tree species. The 123 

dataset obtained from a PerkinElmer Spectrum 100 FTIR Spectrometer was integrated by 3500 124 

variables and 108 observations1.  125 

The data set was processed using Tanagra 1.4.39 software and analysed using PCA, One-Way 126 

ANOVA, Stepwise DA method, Partial-Least squares for Classification (C-PLS), Linear Discriminant 127 

Analysis (LDA) and PLS-LDA linear models. The dataset was split in 4 groups; each named according 128 

to the position in which spectrum was recorded: pith, bark, rings (this included all ring measures) 129 

and sapwood dataset. Each group dataset was used as input of a Stepwise DA method and 130 

classification functions were computed.  Only vibrational spectra of wood samples recorded in the 131 

rings group could be used to discriminate between taxon.  132 

Multivariate techniques 133 

The raw spectra of 6 wood species that belong to fagales order and 3 wood species from 134 

malpighiales order were statistically analysed; sample sizes are given in Table 3. 135 

Wavenumbers from the ring dataset were normalized and any detected outliers were removed. An 136 

initial exploratory analysis with PCA was followed by a pattern recognition procedure to distinguish 137 

the relations between taxa.  PCA is commonly applied to spectroscopy data to study the main 138 

variability in the spectra. The factors were firstly rotated by VARIMAX method to facilitate the 139 

interpretation and secondly interpreted in terms of their chemical meaning. A One-Way ANOVA 140 

analysis was applied over the scores of the rotated principal components from PCA to highlight the 141 

most influent chemical features for grouping the data in fagales or malpighiales orders, as well as 142 

their family subgroups. Supervised pattern recognition was carried out after the exploratory 143 

analysis. Predictor variables, selected using a Stepdisc method, were related to the proposed group 144 

structure (APG II system classification) using mathematical linear models. Several linear models were 145 

computed and compared: PLS-LDA, LDA and C-PLS. This allowed the subsequent classification of 146 

unknown samples. The accuracy of the model was evaluated with validation methods such as Leave 147 

One Out (LOO), bootstrap method and an independent test set.  148 

                                                           
1 Total number of observations: 108. Showed in the present work: 67 (45 from ring dataset and 22 from 
sapwood dataset) 



Results and Discussion 149 

Wood spectra data set 150 

Vibrational spectra of wood samples recorded in the rings are shown for order and family 151 

classification in Fig. 1. The arrows indicate important bands in the discrimination of wood samples 152 

based on the Stepwise DA results. The very intimate mixing of the components makes it difficult to 153 

interpret the spectrum and no visual evidence in the spectra of wood can be found to discriminate 154 

among the groups (Fig. 1).  155 

Exploratory analysis 156 

A Principal Component Analysis (PCA) mathematical technique was applied to over 60 samples of 157 

individual spectra of trees to find the more relevant wavelengths, between the range 4000-500 cm-1, 158 

which contribute to sample discrimination between Fagales and Malpighiales order and Fagaceae 159 

and Betulaceae family. The data set was standardized to avoid the variance of the variables affecting 160 

the principal components analysis. The factor rotated loading (FR) extracted from PCA were used for 161 

interpreting the principal components and to determine which variables are influential in the 162 

formation of PCs. Loading plots are shown in Fig. 2 for order and family datasets, respectively. The 163 

higher the loading of a variable, the more influence it has in the formation of the factor and vice 164 

versa. The output from PCA is shown in Table 4. 165 

A One-Way ANOVA analysis on the scores from PCA revealed one important factor which contains 166 

chemical differences to discriminate fagales from malpighiales orders and two relevant factors from 167 

family dataset with chemical information relevant for the classification (Table 5; p ≤ 0.05).  168 

In the case of order dataset, the third factor selected by the ANOVA is defined by the region 1701-169 

1380 cm-1 considering only significant correlations higher than 70% as cut-off value. A detailed band 170 

assignment of the factor is given in Table 6. This region of the spectrum is probably associated with 171 

aromatic vibrations in lignin and cellulose, as well as some amide stretching and C=O vibrations as 172 

more significant contributions. 173 

On other hand, in the case of family dataset the regions from 4000-3605 and 2819-1754 cm-1 174 

contribute to the formation of the second factor with high significance. The assignment of this 175 

wavenumbers could not be made with certainty. Some CH stretching, not described in the literature, 176 

and the broad C=O stretching band are generally assigned to this region. The third rotated factor is 177 

defined by the wavenumbers from 1629-1179 cm-1. The C-H vibrations of lignin, cellulose and 178 

hemicelluloses exhibit characteristic bands between 1511-1377 cm-1 and the OH in plane bending 179 

normally occurs in the region of 1455-1438 (Marchessault 1962). Bands attributed to guaiacyl 180 

around 1290 cm-1 (Anchukaitis et al. 2008) and cellulose at 1300 cm-1, as well as non-cellulosic 181 

polysaccharides at the region 1214-1179 cm-1 are important contributions to the third factor in the 182 

case of family dataset. The remaining bands observed in this region are shown in Table 6. 183 

Stepwise DA Analysis 184 

10 biomarkers (1742, 1719, 1715, 1696, 1566, 1438, 1384, 1273, 1260 and 950 cm-1) were 185 

successfully found discriminating from Malpighiales to Fagales order. In the IR spectra, it is known 186 

that these wavenumbers belong to C=O stretching in lignin and hemicelluloses and skeletal 187 

vibrations from pectin and cellulose (Table 7).  The darker cells from Table 7 indicate the 188 

wavenumbers highlighted in the ANOVA test described below. The univariate F-value measures the 189 



variable’s total discriminating power without considering how much might be shared by other 190 

variables (Klecka 1980). The wavenumbers are arranged in a descendent order based on their F-191 

values. The greater contributor to the overall discrimination in the Stepwise method will show a 192 

better F-value (Klecka 1980). With regards to family dataset, 8 biomarkers (2595, 2203, 2055, 1997, 193 

1936, 1928, 1916 and 1896 cm-1) were successfully found discriminating between fagaceae and 194 

betulaceae families from fagales order. Differences between groups could not be easily assigned 195 

(Table 7). Kim et al. (2004) also used some of these wavenumbers when analysing some FTIR 196 

spectroscopy data in a taxonomic discrimination. 197 

Classification functions 198 

C-PLS, LDA and PLS-LDA linear models were computed. Table 8 shows the classification functions 199 

with their statistical evaluation for order and family datasets. The coefficients of the classification 200 

functions are not interpreted. The darker cells represent the relative importance of the predictor 201 

from PLS method (variable important in projection indicator or VIP) in the classification with respect 202 

to the other variables (Rakotomalala 2005). Smallest lambda values or largest partial F means high 203 

discrimination (Klecka 1980). The significance of the difference was checked using MANOVA and two 204 

transformations of its lambda, Bartlett transformation and Rao transformation and there was a 205 

significant difference between groups (Table 9; P< 0.01). Error rate estimation is presented in Table 206 

10 using confusion matrix, cross-validation, bootstrap method, Leave-One-Out and external sample 207 

tests (test size appears in brakets).The bootstrap value shown in Table 10 is the higher error 208 

obtained by the .632 estimator and its variant .632+. The model seems stable and with a low 209 

classification error.  LDA gave the lowest error in the classification. 210 

Conclusions 211 

FTIR spectroscopy in combination with PCA and linear model such as LDA were suitable techniques 212 

to discriminate wood samples based on the APG II Classification. Ten biomarkers seemed to 213 

discriminate fagales from malpighiales order with high significance and low classification error. 214 

Concerning to the discrimination of fagaceae from betulaceae families from fagales order, 8 215 

biomarkers were highlighted for sample discrimination. With the inclusion of new wood samples it is 216 

likely that new chemical features will emerge. In the context of the present work, multivariate 217 

analysis has highlighted the chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) in 218 

the order dataset, but that this is less evident in the family dataset. Our results suggest that 219 

differences in cell-wall composition and structure can provide the basis for chemotaxonomy of 220 

flowering plants. 221 
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Tables 352 

Table 1 Recent bibliography related of chemical taxonomy of wood using FTIR spectroscopy and Multivariate analysis 353 

Analytical 

approach 
Objective Conclusions Ref 

FT-IR  

Investigate the changes 
in composition and 
structure of oak wood 
and barley straw 

Good results in the analysis of plant fibers and 
cell walls 

(Stewart et 
al. 1995) 

FT-IR/ 
Multiv. analysis 

Taxonomic classification 
of 65 leaf samples of 
genus Camellia (Ericales 
order) 

Identification and classification of species in the 
same genus 

(Shen et al. 
2008) 

FT-IR/ 
Multiv. analysis 

Characterization of 5 
dipterocarp wood 
species of malvales 
order and their aisolated 
lignins 

Measure of the G/S ratio to distinct between 
species. 

(Rana et al. 
2009) 

FT-IR/ 
Multiv. analysis 

Inter-species 
competition between a 
monocotyledon and a 
dicotyledon by growth 
analysis 

Detecting changes in the global metabolic 
profiles of plants 

(Gidman et 
al. 2003) 



FT-IR/ 
Multivar. 
analysis 

Analysis of whole cell of 
leaf samples of 7 higher 
plant species 

· Determination of 3 to 5 biomarkers that 
discriminated plants in the carbohydrate 
fingerprint region (1200-800 cm-1) 
· Discrimination between monocot and 
dicotyledonous plants 
· FT-IR reflects phylogenetic relationships 
between plants 
· The differences in cell-wall composition and 
estructure can provide the basis for 
chemotaxonomy of flowering plants 

(Kim et al. 
2004) 

FT-IR/ 
Multivar. 
analysis 

Study of polisaccharides 
and hemicelluloses 
extracted from plants 

The region at 1200-800 cm-1 where shown to be 
useful for the identification of polysaccharides 
with different structure and composition 

(Kacurákov
á et al. 
2000) 

FT-IR/ 
Multivar. 
analysis 

Differenciation of plants 
based in their leaf 
fragments technique 
applied to 3 different 
genera: Ranunculus 
(Ranunculales order), 
Acantholimon(Caryophyl
lales order)and 
Atragalus(Fabales order) 

FT-IR revealed dramatic difference between 
genera in lipid metabolism, carbohydrate 
composition and protein conformation. 
 
Succeed in molecular characterization and 
identification of plants. 

(Gorgulu et 
al. 2007) 

FTIR/Multivar. 
analysis 

Differentiation of wood 
species 

It is possible to differentiate between samples of 
wood species of different origins 

(Brunner et 
al. 1996) 

FT-NIR 
Determination of the 
origin of several Spruce 
samples  

Trees growing in different locations have 
different chemical composition and can be 
distingued by using FTIR and multivatiate 
analysis 

(Sandak et 
al. 2010) 

Table 2 Wood samples names based on APG II System Classification  354 

Order Family Genus Species Common name 

     

Malpighiales  Salicaceae  
Populus  Populus  Poplar  
Populus  Poplar nigra Black Poplar 
Salix  Salix fragilis Willow  

     

Fagales 

Betulaceae 
Alnus M. Alnus glutinosa Black Alder 
Corylus L. Corylus avellana Hazel 
Betula L. Betula pubescens Birch 

    

Fagaceae  
Castanea  Castanea sativa Sweet Chesnut 
Fagus L. Fagus sylvatica Beech  
Quercus  Quercus robur English Oak 

Table 3 Sample size available for chemometric analysis 355 

Rings  

position 

Sample size 

Order (45) Family (27) 
fagales:27 malpighiales:18 fagaceae:12 betulaceae:15 

  
Training set: 37 

 
Training set: 20 

 Test set: 8 Test set: 7 
Table 4 PCA summary of factor loading 356 

 Order  Family 

Factor Eigen 

value 

% 

explained 

% 

cumulated 

Eigen 

value 

% 

explained 

% 

cumulated 

1 24447.53 69.91 69.91 2559.140 73.10 73.10 

2 626.618 17.90 87.81 588.9263 16.82 89.92 

3 138.49 3.96 91.76 142.1563 4.06 93.98 

4 99.3673 2.84 94.60 66.20825 1.89 95.87 

5 66.8034 1.91 96.51 59.16276 1.69 97.56 



Table 5 Output from One-Way ANOVA analysis 357 

 
Value Examples Average Std-dev 

Variance decomposition Significance level 
Source Sum of square d.f. Statistics Value Proba 

FR3 Fagales 27 0.0329 0.0661 BSS 0.0729 1 

Fisher's F 11.915489 0.001261 Malpighiales 18 -0.0493 0.0938 WSS 0.2631 43 

All 45 0 0.0874 TSS 0.336 44 

FR2 Fagaceae 12 -9.865 15.3611 BSS 2100.3693 1 

Fisher's F 5.445587 0.027957 

Betulaceae 15 7.8848 22.4355 WSS 9642.5285 25 

All 27 -0.004 21.2521 TSS 11742.898 26 

FR3 Fagaceae 12 -7.6125 8.5755 BSS 1250.871 1 

Fisher's F 10.491333 0.003376 
Betulaceae 15 6.0853 12.455 WSS 2980.7246 25 

All 27 -0.0026 12.7575 TSS 4231.5956 26 

Table 6 Band assignments of factor rotated loadings from PCA highlighted in the ANOVA analysis 358 

FR ν (cm
-1

) Literature assignments and Band origin Ref. 

    

Order 

3 1701-1380 1645-1612 C-O stretching of conjugated or 

aromatic ketones, C=O stretching in flavones 

(Hobro et al. 2010; Huang et al. 2008) 

  1640-1630 water (Liang and Marchessault 1959; Marchessault and 

Liang 1962; Revanappa et al. 2010) 

  1650, 1555 C=N and N-H stretching from 

amides, mainly proteins 

(Gorgulu et al. 2007) 

  1610-1600, 1513-1502 aromatic skeletal 

vibration lignin 

(Bjarnestad and Dahlman 2002; Hobro et al. 2010; 

Huang et al. 2008; Kubo and Kadla 2005; 

Marchessault 1962; Pandey and Vuorinen 2008; 

Rana et al. 2009; Rana and Sciences 2008; Stewart 

et al. 1995; Wang et al. 2009) 

  1427,1425,1420 aromatic ring vibration 

combined with C-H in-plane deformation lignin 

(Kubo and Kadla 2005; Rhoads et al. 1987; Wang et 

al. 2009)  

  1455 OH in-plane bending cellulose  (Heinze et al. 2006; Liang and Marchessault 1959)  

  1430 CH2 bending cellulose (Liang and Marchessault 1959; Rhoads et al. 1987)  

  1428-1416 CH2 scissors vibrations in cellulose, 

aromatic skeletal vibration 

(Heinze et al. 2006; Hobro et al. 2010)  

Family 

2 4000-3605 X-H stretching (Stuart 2004)  

 2820-2573 C-H stretching (Stuart 2004)  

 2565-1774  C=O stretching (Heinze et al. 2006)  

 2350-2340 CO2 (Hobro et al. 2010)  

 1773-1771 xylan (Huang et al. 2008; Mohebby 2005)  

3 1511-1377 1511-1502 aromatic ring vibration lignin (Bjarnestad and Dahlman 2002; Hobro et al. 2010; 

Huang et al. 2008; Marchessault 1962; Pandey and 

Vuorinen 2008; Rana et al. 2009; Rana and Sciences 

2008; Stewart et al. 1995; Wang et al. 2009)  

  1470-1455 aromatic C-H deformation 

asymmetric in -CH3 and -CH2- pyran ring in 

(Hobro et al. 2010; Kubo and Kadla 2005; 

Marchessault 1962; Pandey and Vuorinen 2008; 



lignin and xylan Rana and Sciences 2008; Rhoads et al. 1987; Wang 

et al. 2009)  

  1427,1425,1420 aromatic ring vibration 

combined with C-H in-plane deformation lignin 

(Kubo and Kadla 2005; Rhoads et al. 1987; Wang et 

al. 2009)  

  1428-1416 CH2 scissors vibrations in cellulose, 

aromatic skeletal vibration 

(Heinze et al. 2006; Hobro et al. 2010) 

 1376-1195 1330-1315 C-O of Syringyl ring (Hobro et al. 2010; Kubo and Kadla 2005; Mohebby 

2005; Obst 1982; Pandey and Vuorinen 2008; Rana 

et al. 2009; Rana and Sciences 2008; Rhoads et al. 

1987; Wang et al. 2009)  

  1600 C-O antisymmetric stretching glucuronic 

acid (xylan) 

(Marchessault and Liang 1962)  

  1375,1374,1372 C-H bending (CH3 skeletal) 

cellulose (Liang and Marchessault 1959; Rhoads et al. 1987)  

  1350,1245, 1215 OH in-plane bending xylan (Marchessault and Liang 1962)  

  1336,1335 CH2 and C-OH in-plane bending 

cellulose (Liang and Marchessault 1959; Rhoads et al. 1987)  

  1318,1317 CH2 wagging crystalline cellulose  (Liang and Marchessault 1959; Rhoads et al. 1987)  

  1270-1268 C=O of Guaiacyl ring vibration in 

lignin 

(Hobro et al. 2010; Huang et al. 2008; Marchessault 

1962; Nuopponen 2005; Obst 1982; Rana et al. 

2009; Rana and Sciences 2008; Rhoads et al. 1987; 

Wang et al. 2009) 

Table 7 Best discriminator variables based on a Stepwise estimation from order and family datasets  359 

Best ν 

(cm
-1

) 
F-value 

Percentage 

in each 

Rotated 

Factor (FR) 

Band assignment Reference 

Order 
1742 F:35.50 

p:0.0000 
FR5 (57%),  
FR2 (30%) 

1740-1730  C=O stretching in acetyl 

groups of hemicelluloses 

(xylan/glucomannan) 

(Åkerholm et al. 2001; Bjarnestad and 

Dahlman 2002; Gorgulu et al. 2007; 

Marchessault 1962; McCann et al. 2001; 

Mohebby 2008; Mohebby 2005; Rana et al. 

2009; Stewart et al. 1995) 

1384 F:35.23 
p:0.0000 

FR1 (49%),  
FR3 (37%) 

C-H bending  deformation 

polysaccharide band (cellulose and 

hemicellulose) 

(Marchessault 1962; Marchessault and 

Liang 1962; Mohebby 2005; Pandey and 

Vuorinen 2008; Rana and Sciences 2008) 

1696 F:24.32 
p:0.0000 

FR3 (47%),  
FR1 (33%) 

C=O stretching (Coates 2000; Silverstein et al. 2005)  

1719, 
1715 

F:19.57 
p:0.0001 
F:9.38 
p:0.0040 

FR5 (38%), 
 FR2 (30%) 
FR2 (30%),  
FR5 (28%) 

1711 C=O stretch (unconjugated) in 
lignin 

(Hobro et al. 2010) 

950 F:9.86 
p:0.0031 

FR1 (64%),  
FR4 (20%) 

C-H ring pectin (Kacuráková et al. 2000; Wellner 1998)  

1566 F:9.77 
p:0.0033 

FR3 (79%),  
FR1 (18%) 

1555 Amide II (C=N and N–H 
stretching): mainly proteins 

(Gorgulu et al. 2007) 21 



1273 F:9.03 
p:0.0047 

FR1 (56%), 
 FR3 (19%) 

1270-1268 C=O of Guaiacyl ring 

vibration in lignin 

(Hobro et al. 2010; Huang et al. 2008; 

Marchessault 1962; Nuopponen 2005; Obst 

1982; Rana et al. 2009; Rana and Sciences 

2008; Rhoads et al. 1987; Wang et al. 2009) 

1438 F:6.15 
p:0.0181 

FR1 (50%),  
FR3 (35%) 

aromatic skeletal vibrations combined 

with CH2 symmetrical bending mode  

of hydroxymethyl in crystalline 

cellulose 

(Åkerholm et al. 2001; Anchukaitis et al. 

2008; Bjarnestad and Dahlman 2002; 

Marchessault 1962; Rana and Sciences 

2008)  

1260 F:5.62 
p:0.0235 

FR1 (46%),  
FR5 (22%) 

1270-1268 C=O of Guaiacyl ring 

vibration in lignin C-O (ester linkages)  

(Hobro et al. 2010; Huang et al. 2008; 
Marchessault 1962; Nuopponen 2005; Obst 
1982; Rana et al. 2009; Rana and Sciences 
2008; Rhoads et al. 1987; Wang et al. 2009)  

Family 
2203 F:32.50 

p:0.0000 
FR2 (83%), 
FR1 (11%) 

C=O stretching (Stuart 2004)  

1936 F:23.49 
p:0.0001 

FR2 (89%), 
FR1 (6%) 

-C=C=CH2 stretching (Larkin 2011)  

2595 F:22.08 
p:0.0001 

FR2 (71%), 
FR3 (40%) 

S-H stretch (Coates 2000; Silverstein et al. 2005)  

1997 F:16.32 
p:0.0007 

FR2 (88%), 
FR1 (6%) 

Allenes, ketenes, isocyanates, 

isothiocyanates 

 

1916 F:12.76 
p:0.0016 

FR2 (86%), 
FR1 (7%) 

2nd overtone CONH O-H stretch (Brinkmann et al. 2002)  

2055 F:11.17 
p:0.0033 

FR2 (87%), 
FR1 (9%) 

-NCS isothiocyanate or transition metal 

carbonyl 

(Coates 2000)  

1928 F:11.00 
p:0.0033 

FR2 (87%), 
FR1 (6%) 

1st overtone P-OH C=O stretch (Brinkmann et al. 2002)  

1896 F:9.05 
p:0.0075 

FR2 (87%), 
FR1 (7%) 

transition metal carbonyl (Coates 2000)  

Table 8 Classification functions for Betulaceae from order and family models 360 

 Classification functions Statistical evaluation 
Descriptors PLS-LDA PLS LDA VIP Wilks L. Partial L. F(1,5) p-value 

Order  
1742 24.5771 0.6958 47.0101 1.0621 0.100925 0.348437 63.57873 0.00000 
1719 -25.2183 -0.7140 1.5717 1.0803 0.035177 0.999686 0.01067 0.91835 

1715 -14.1490 -0.4006 -76.1243 0.8381 0.082211 0.427755 45.48466 0.00000 

1696 14.6019 0.4134 42.9788 0.9556 0.050833 0.6918 15.14716 0.00044 
1566 5.6683 0.1605 6.2828 1.0177 0.035861 0.980616 0.67207 0.41804 
1438 -16.4909 -0.4669 -27.7396 0.9082 0.045834 0.767255 10.31382 0.00288 

1384 -15.7865 -0.4469 -31.3282 0.7091 0.040389 0.870684 5.04976 0.03123 
1273 29.7072 0.8410 90.2861 1.1234 0.066927 0.525439 30.70779 0.00000 
1260 -2.0519 -0.0581 -41.9669 0.7396 0.040981 0.858109 5.62201 0.02355 
950 4.7910 0.1356 4.8394 1.3844 0.037743 0.931713 2.49193 0.12369 

constant -10.7958 0.0000 -20.5787 - 
Family  

2595 30.705272 0.685431 51.63692 1.709 0.039933 0.31961 23.41697 0.00052 

2203 -44.716878 -0.998211 -106.72309 1.1159 0.058034 0.219921 39.01791 0.000063 
2055 3.987204 0.089006 39.623592 0.5761 0.018318 0.69673 4.78805 0.051132 
1997 -29.4359 -0.657095 -58.627727 1.1446 0.022989 0.555184 8.81324 0.012775 
1936 -15.100637 -0.33709 -164.08719 0.8776 0.049105 0.259913 31.32187 0.000161 

1928 12.499757 0.279031 80.408548 0.5761 0.024477 0.521421 10.0962 0.008801 

1916 31.208287 0.69666 148.63912 0.7796 0.047677 0.267698 30.09116 0.00019 
1896 23.15418 0.516869 43.218349 0.6944 0.015201 0.839605 2.1014 0.175069 
constant -10.367996 -0.001317 -28.186321 - 



Table 9 MANOVA analysis 361 

 Order Family 

Stat Value p-value Value p-value 

Wilks' Lambda 0.0352 - 0.0128 - 

Bartlett -- C(7) 127.2116 0.0000 61.057 0.0000 

Rao -- F(7, 75) 93.2842 0.0000 106.359 0.0000 

Table 10 Validation of the order and family models with ring and sapwood samples 362 

Order 
Sapwood sample test (12) 

Method Confusion matrix (%) Cross-validation Bootstrap Leave-One-Out Independent 

Test set 

PLS-LDA 0.0000 0.0000 0.0191 0.0000 0.0000 

PLS 0.0000 0.0400 0.0487 0.0175 0.0833 

LDA 0.0000 0.0000 0.0025 0.0000 0.0000 
Rings sample test (8) 

Method Confusion matrix(%) Cross-validation Bootstrap Leave-One-Out Independent 

Test set 

PLS-LDA 0.0000 0.0000 0.0148 0.0000 0.0000 
PLS 0.0000 0.0000 0.0216 0.0000 0.0000 
LDA 0.0000 0.0000 0.0016 0.0000 0.0000 

 

Family 
Sapwood sample test (10) 
Method Confusion matrix(%) Cross-validation Bootstrap Leave-One-Out Independent 

Test set 

PLS-LDA 0.0000 0.0333 0.0809 0.0811 0.3000 
C-PLS 0.0000 0.0333 0.0658 0.0811 0.3000 
LDA 0.0000 0.0333 0.0809 0.0811 0.3000 

Rings sample test (7) 
Method Confusion matrix(%) Cross-validation Bootstrap Leave-One-Out Test set 

PLS-LDA 0.0000 0.0000 0.0107 0.0000 0.0000 

PLS 0.0000 0.0000 0.0107 0.0000 0.0000 
LDA 0.0000 0.0000 0.0026 0.0000 0.0000 
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