2,047 research outputs found

    Identification, release and olfactory detection of bile salts in the intestinal fluid of the Senegalese sole (Solea senegalensis)

    Get PDF
    Olfactory sensitivity to bile salts is wide-spread in teleosts; however, which bile salts are released in suYcient quantities to be detected is unclear. The current study identiWed bile salts in the intestinal and bile Xuids of Solea senegalensis by mass spectrometry–liquid chromatography and assessed their olfactory potency by the electro-olfactogram

    Phosphodiesterase-III Inhibitor Prevents Hemorrhagic Transformation Induced by Focal Cerebral Ischemia in Mice Treated with tPA

    Get PDF
    The purpose of the present study was to investigate whether cilostazol, a phosphodiesterase-III inhibitor and antiplatelet drug, would prevent tPA-associated hemorrhagic transformation. Mice subjected to 6-h middle cerebral artery occlusion were treated with delayed tPA alone at 6 h, with combined tPA plus cilostazol at 6 h, or with vehicle at 6 h. We used multiple imaging (electron microscopy, spectroscopy), histological and neurobehavioral measures to assess the effects of the treatment at 18 h and 7 days after the reperfusion. To further investigate the mechanism of cilostazol to beneficial effect, we also performed an in vitro study with tPA and a phosphodiesterase-III inhibitor in human brain microvascular endothelial cells, pericytes, and astrocytes. Combination therapy with tPA plus cilostazol prevented development of hemorrhagic transformation, reduced brain edema, prevented endothelial injury via reduction MMP-9 activity, and prevented the blood-brain barrier opening by inhibiting decreased claudin-5 expression. These changes significantly reduced the morbidity and mortality at 18 h and 7 days after the reperfusion. Also, the administration of both drugs prevented injury to brain human endothelial cells and human brain pericytes. The present study indicates that a phosphodiesterase-III inhibitor prevents the hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA

    Stereotactic, single-dose irradiation of stage I non-small cell lung cancer and lung metastases

    Get PDF
    BACKGROUND: We prospectively reviewed response rates, local control, and side effects after non-fractionated stereotactic high single-dose body radiation therapy for lung tumors. METHODS: Fifty-eight patients underwent radiosurgery involving single-dose irradiation. With 25 patients, 31 metastases in the lungs were irradiated; with each of 33 patients, stage I non-small cell lung cancer (NSCLC) was subject to irradiation. The standard dose prescribed to the isocenter was 30 Gy with an axial safety margin of 10 mm and a longitudinal safety margin of 15 mm. The planning target volume (PTV) was defined using three CT scans with reference to the phases of respiration so that the movement span of the clinical target volume (CTV) was enclosed. RESULTS: The volume of the metastases (CTV) varied from 2.8 to 55.8 cm(3 )(median: 6.0 cm(3)) and the PTV varied from 12.2 to 184.0 cm(3 )(median: 45.0 cm(3)). The metastases ranged from 0.7 to 4.5 cm in largest diameter. The volume of the bronchial carcinomas varied from 4.2 to 125.4 cm(3)(median: 17.5 cm(3)) and the PTV from 15.6 to 387.3 cm(3 )(median: 99.8 cm(3)). The bronchial carcinomas ranged from 1.7 to 10 cm in largest diameter. Follow-up periods varied from 6.8 to 63 months (median: 22 months for metastases and 18 months for NSCLC). Local control was achieved with 94% of NSCLC and 87% of metastases. No serious symptomatic side effects were observed. According to the Kaplan-Meier method the overall survival probability rates of patients with lung metastases were as follows: 1 year: 97%, 2 years: 73%, 3 years: 42%, 4 years: 42%, 5 years: 42% (median survival: 26 months); of those with NSCLC: 1 year: 83%, 2 years: 63%, 3 years: 53%, 4 years: 39%: (median survival: 20.4 months). CONCLUSION: Non-fractionated single-dose irradiation of metastases in the lungs or of small, peripheral bronchial carcinomas is an effective and safe form of local treatment and might become a viable alternative to invasive techniques

    Ocean Acidification Affects Prey Detection by a Predatory Reef Fish

    Get PDF
    Changes in olfactory-mediated behaviour caused by elevated CO2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO2 will impact the other key part of the predator-prey interaction – the predators. We investigated the effects of elevated CO2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO2 levels or one of two elevated CO2 levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO2 treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO2 treatment and feeding activity was lower for fish in the mid CO2 treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality

    Geminin-Deficient Neural Stem Cells Exhibit Normal Cell Division and Normal Neurogenesis

    Get PDF
    Neural stem cells (NSCs) are the progenitors of neurons and glial cells during both embryonic development and adult life. The unstable regulatory protein Geminin (Gmnn) is thought to maintain neural stem cells in an undifferentiated state while they proliferate. Geminin inhibits neuronal differentiation in cultured cells by antagonizing interactions between the chromatin remodeling protein Brg1 and the neural-specific transcription factors Neurogenin and NeuroD. Geminin is widely expressed in the CNS during throughout embryonic development, and Geminin expression is down-regulated when neuronal precursor cells undergo terminal differentiation. Over-expression of Geminin in gastrula-stage Xenopus embryos can expand the size of the neural plate. The role of Geminin in regulating vertebrate neurogenesis in vivo has not been rigorously examined. To address this question, we created a strain of Nestin-Cre/Gmnnfl/fl mice in which the Geminin gene was specifically deleted from NSCs. Interestingly, we found no major defects in the development or function of the central nervous system. Neural-specific GmnnΔ/Δ mice are viable and fertile and display no obvious neurological or neuroanatomical abnormalities. They have normal numbers of BrdU+ NSCs in the subgranular zone of the dentate gyrus, and GmnnΔ/Δ NSCs give rise to normal numbers of mature neurons in pulse-chase experiments. GmnnΔ/Δ neurosphere cells differentiate normally into both neurons and glial cells when grown in growth factor-deficient medium. Both the growth rate and the cell cycle distribution of cultured GmnnΔ/Δ neurosphere cells are indistinguishable from controls. We conclude that Geminin is largely dispensable for most of embryonic and adult mammalian neurogenesis

    Evolutionary Patterns and Selective Pressures of Odorant/Pheromone Receptor Gene Families in Teleost Fishes

    Get PDF
    BACKGROUND: Teleost fishes do not have a vomeronasal organ (VNO), and their vomeronasal receptors (V1Rs, V2Rs) are expressed in the main olfactory epithelium (MOE), as are odorant receptors (ORs) and trace amine-associated receptors (TAARs). In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (K(A)/K(S)) in TAARs tended to be higher than those in ORs and V2Rs. CONCLUSIONS/SIGNIFICANCE: Frequent gene gains/losses and high K(A)/K(S) in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
    corecore