441 research outputs found
Peter Pan discs: finding Neverland's parameters
Peter Pan discs are a recently discovered class of long-lived discs around
low-mass stars that survive for an order of magnitude longer than typical
discs. In this paper we use disc evolutionary models to determine the required
balance between initial conditions and the magnitude of dispersal processes for
Peter Pan discs to be primordial. We find that we require low transport
(), extremely low external photoevaporation
(), and relatively high disc masses ()
to produce discs with ages and accretion rates consistent with Peter Pan discs.
Higher transport () results in disc lifetimes that are too
short and even lower transport () leads to accretion rates
smaller than those observed. The required external photoevaporation rates are
so low that primordial Peter Pan discs will have formed in rare environments on
the periphery of low-mass star-forming regions, or deeply embedded, and as such
have never subsequently been exposed to higher amounts of UV radiation. Given
that such an external photoevaporation scenario is rare, the required disc
parameters and accretion properties may reflect the initial conditions and
accretion rates of a much larger fraction of the discs around low-mass stars.Comment: Published in MNRAS, 6 pages, 4 figure
Tacrolimus-Induced Intestinal Angioedema: Diagnosis by Capsule Endoscopy
Small intestinal angioedema has been reported with angiotensin converting enzyme inhibitors therapy, but not in implanted patients treated with tacrolimus. We present a kidney transplanted patient, hospitalized with severe diarrhea, diagnosed with tacrolimus-induced intestinal angioedema with abdominal computerized tomography and capsule endoscopy. To the best of our knowledge this is the first described case of tacrolimus-induced small bowel angioedema diagnosed with capsule endoscopy
Pneumocystis primary infection in non-immunosuppressed infants in Lima, Peru
Objectives:
To provide original data on Pneumocystis primary infection in non-immunosuppressed infants from Peru. /
Methods:
A cross sectional study was performed. Infants less than seven months old, without any underlying medical conditions attending the “well baby” outpatient clinic at one hospital in Lima, Peru were prospectively enrolled during a 15-month period from November 2016 to February 2018. All had a nasopharyngeal aspirate (NPA) for detection of P. jirovecii DNA using a PCR assay, regardless of respiratory symptoms. P. jirovecii DNA detection was considered to represent pulmonary colonization contemporaneous with Pneumocystis primary infection. Associations between infants’ clinical and demographic characteristics and results of P. jirovecii DNA detection were analyzed. /
Results:
P. jirovecii DNA was detected in 45 of 146 infants (30.8%) and detection was not associated with concurrent respiratory symptoms in 40 of 45 infants. Infants with P. jirovecii had a lower mean age when compared to infants not colonized (p <0.05). The highest frequency of P. jirovecii was observed in 2-3-month-old infants (p < 0.01) and in the cooler winter and spring seasons (p <0.01). Multivariable analysis showed that infants living in a home with ≤ 1 bedroom were more likely to be colonized; Odds Ratio =3.03 (95%CI 1.31-7.00; p =0.01). /
Conclusion:
Pneumocystis primary infection in this single site in Lima, Peru, was most frequently observed in 2-3-month-old infants, in winter and spring seasons, and with higher detection rates being associated with household conditions favoring close inter-individual contacts and potential transmission of P. jirovecii
The sub-energetic GRB 031203 as a cosmic analogue to GRB 980425
Over the six years since the discovery of the gamma-ray burst GRB 980425,
associated with the nearby (distance, ~40 Mpc) supernova 1998bw, astronomers
have fiercely debated the nature of this event. Relative to bursts located at
cosmological distances, (redshift, z~1), GRB 980425 was under-luminous in
gamma-rays by three orders of magnitude. Radio calorimetry showed the explosion
was sub-energetic by a factor of 10. Here, we report observations of the radio
and X-ray afterglow of the recent z=0.105 GRB 031203 and demonstrate that it
too is sub-energetic. Our result, when taken together with the low gamma-ray
luminosity, suggest that GRB 031203 is the first cosmic analogue to GRB 980425.
We find no evidence that this event was a highly collimated explosion viewed
off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically
sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows.
Intensive follow-up of faint bursts with smooth gamma-ray light curves (common
to both GRBs 031203 and 980425) may enable us to reveal their expected large
population.Comment: To Appear in Nature, August 5, 200
Using BOX-PCR to exclude a clonal outbreak of melioidosis
Background
Although melioidosis in endemic regions is usually caused by a diverse range of Burkholderia pseudomallei strains, clonal outbreaks from contaminated potable water have been described. Furthermore B. pseudomallei is classified as a CDC Group B bioterrorism agent. Ribotyping, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) have been used to identify genetically related B. pseudomallei isolates, but they are time consuming and technically challenging for many laboratories.
Methods
We have adapted repetitive sequence typing using a BOX A1R primer for typing B. pseudomallei and compared BOX-PCR fingerprinting results on a wide range of well-characterized B. pseudomallei isolates with MLST and PFGE performed on the same isolates.
Results
BOX-PCR typing compared favourably with MLST and PFGE performed on the same isolates, both discriminating between the majority of multilocus sequence types and showing relatedness between epidemiologically linked isolates from various outbreak clusters.
Conclusion
Our results suggest that BOX-PCR can be used to exclude a clonal outbreak of melioidosis within 10 hours of receiving the bacterial strains
Observational and Physical Classification of Supernovae
This chapter describes the current classification scheme of supernovae (SNe).
This scheme has evolved over many decades and now includes numerous SN Types
and sub-types. Many of these are universally recognized, while there are
controversies regarding the definitions, membership and even the names of some
sub-classes; we will try to review here the commonly-used nomenclature, noting
the main variants when possible. SN Types are defined according to
observational properties; mostly visible-light spectra near maximum light, as
well as according to their photometric properties. However, a long-term goal of
SN classification is to associate observationally-defined classes with specific
physical explosive phenomena. We show here that this aspiration is now finally
coming to fruition, and we establish the SN classification scheme upon direct
observational evidence connecting SN groups with specific progenitor stars.
Observationally, the broad class of Type II SNe contains objects showing strong
spectroscopic signatures of hydrogen, while objects lacking such signatures are
of Type I, which is further divided to numerous subclasses. Recently a class of
super-luminous SNe (SLSNe, typically 10 times more luminous than standard
events) has been identified, and it is discussed. We end this chapter by
briefly describing a proposed alternative classification scheme that is
inspired by the stellar classification system. This system presents our
emerging physical understanding of SN explosions, while clearly separating
robust observational properties from physical inferences that can be debated.
This new system is quantitative, and naturally deals with events distributed
along a continuum, rather than being strictly divided into discrete classes.
Thus, it may be more suitable to the coming era where SN numbers will quickly
expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most
welcom
PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses
The hydrogen-poor supernova PTF11rka (z = 0.0744), reported by the Palomar Transient Factory, was observed with various telescopes starting a few days after the estimated explosion time of 2011 Dec. 5 UT and up to 432 rest-frame days thereafter. The rising part of the light curve was monitored only in the R_PTF filter band, and maximum in this band was reached ~30 rest-frame days after the estimated explosion time. The light curve and spectra of PTF11rka are consistent with the core-collapse explosion of a ~10 Msun carbon-oxygen core evolved from a progenitor of main-sequence mass 25--40 Msun, that liberated a kinetic energy (KE) ~ 4 x 10^{51} erg, expelled ~8 Msun of ejecta (Mej), and synthesised ~0.5 Msun of 56Nichel. The photospheric spectra of PTF11rka are characterised by narrow absorption lines that point to suppression of the highest ejecta velocities ~>15,000 km/s. This would be expected if the ejecta impacted a dense, clumpy circumstellar medium. This in turn caused them to lose a fraction of their energy (~5 x 10^50 erg), less than 2% of which was converted into radiation that sustained the light curve before maximum brightness. This is reminiscent of the superluminous SN 2007bi, the light-curve shape and spectra of which are very similar to those of PTF11rka, although the latter is a factor of 10 less luminous and evolves faster in time. PTF11rka is in fact more similar to gamma-ray burst supernovae (GRB-SNe) in luminosity, although it has a lower energy and a lower KE/Mej ratio
Relativistic ejecta from XRF 060218 and the rate of cosmic explosions
Over the last decade, long-duration gamma-ray bursts (GRBs) including the
subclass of X-ray flashes (XRFs) have been revealed to be a rare variety of
Type Ibc supernova (SN). While all these events result from the death of
massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those
of ordinary Type Ibc SNe by many orders of magnitude. The essential physical
process that causes a dying star to produce a GRB or XRF, and not just an SN,
remains the crucial open question. Here we present radio and X-ray observations
of XRF 060218 (associated with SN 2006aj), the second nearest GRB identified
to-date, which allow us to measure its total energy and place it in the larger
context of cosmic explosions. We show that this event is 100 times less
energetic but ten times more common than cosmological GRBs. Moreover, it is
distinguished from ordinary Type Ibc SNe by the presence of 10^48 erg coupled
to mildly-relativistic ejecta, along with a central engine (an accretion-fed,
rapidly rotating compact source) which produces X-rays for weeks after the
explosion. This suggests that the production of relativistic ejecta is the key
physical distinction between GRBs/XRFs and ordinary SNe, while the nature of
the central engine (black hole or magnetar) may distinguish typical bursts from
low-luminosity, spherical events like XRF 060218.Comment: To appear in Nature on August 31 2006 (15 pages, 3 figures, 1 table,
including Supplementary Information
Eta Carinae and the Luminous Blue Variables
We evaluate the place of Eta Carinae amongst the class of luminous blue
variables (LBVs) and show that the LBV phenomenon is not restricted to
extremely luminous objects like Eta Car, but extends luminosities as low as
log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses
as low as ~10-15 Msun. We present a census of S Doradus variability, and
discuss basic LBV properties, their mass-loss behaviour, and whether at maximum
light they form pseudo-photospheres. We argue that those objects that exhibit
giant Eta Car-type eruptions are most likely related to the more common type of
S Doradus variability. Alternative atmospheric models as well as
sub-photospheric models for the instability are presented, but the true nature
of the LBV phenomenon remains as yet elusive. We end with a discussion on the
evolutionary status of LBVs - highlighting recent indications that some LBVs
may be in a direct pre-supernova state, in contradiction to the standard
paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova
imposters" (eds R. Humphreys and K. Davidson) new version submitted to
Springe
- …