648 research outputs found

    Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay

    Get PDF
    Although delayed puberty is relatively common and often familial, its molecular and pathophysiologic basis is poorly understood. In contrast, the molecular mechanisms underlying some forms of hypogonadotropic hypogonadism (HH) are clearer, following the description of mutations in the genes KAL, GNRHR, and PROP1. Mutations in another gene, DAX1 (AHC), cause X-linked adrenal hypoplasia congenita and HH. Affected boys usually present with primary adrenal failure in infancy or childhood and HH at the expected time of puberty.DAX1 mutations have also been reported to occur with a wider spectrum of clinical presentations. These cases include female carriers of DAX1 mutations with marked pubertal delay and a male with incomplete BH and mild adrenal insufficiency in adulthood. Given this emerging phenotypic spectrum of clinical presentation in men and women with DAX1 mutations, we hypothesized that DAX1 might be a candidate gene for mutation in patients with idiopathic sporadic or familial HH or constitutional delay of puberty. Direct sequencing of DAX1 was performed in 106 patients, including 85 (80 men and 5 women) with sporadic HH or constitutional delay of puberty and patients from 21 kindreds with familial forms of these disorders. No DAX1 mutations were found in these groups of patients, although silent single nucleotide polymorphisms were identified (T114C, G498A). This study suggests that mutations in DAX1 are unlikely to be a common cause of HH or pubertal delay in the absence of a concomitant history of adrenal insufficiency

    Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene

    Get PDF
    Author Posting. © Annual Reviews, 2007. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Environment and Resources 32 (2007): 31-66, doi:10.1146/annurev.energy.32.041706.124700.The global carbon and climate systems are closely intertwined, with biogeochemical processes responding to and driving climate variations. Over a range of geological and historical time-scales, warmer climate conditions are associated with higher atmospheric levels of CO2, an important climate-modulating greenhouse gas. The atmospheric CO2-temperature relationship reflects two dynamics, the planet’s climate sensitivity to a perturbation in atmospheric CO2 and the stability of non-atmospheric carbon reservoirs to evolving climate. Both exhibit non-linear behavior, and coupled carbon-climate interactions have the potential to introduce both stabilizing and destabilizing feedback loops into the Earth System. Here we bring together evidence from a wide range of geological, observational, experimental and modeling studies on the dominant interactions between the carbon cycle and climate. The review is organized by time-scale, spanning interannual to centennial climate variability, Holocene millennial variations and Pleistocene glacial-interglacial cycles, and million year and longer variations over the Precambrian and Phanerozoic. Our focus is on characterizing and, where possible quantifying, the emergent behavior internal to the coupled carbon-climate system as well as the responses of the system to external forcing from tectonics, orbital dynamics, catastrophic events, and anthropogenic fossil fuel emissions. While there are many unresolved uncertainties and complexity in the carbon cycle, one emergent property is clear across time scales: while CO2 can increase in the atmosphere quickly, returning to lower levels through natural processes is much slower, so the consequences of the human perturbation will far outlive the emissions that caused them.S. Doney acknowledges support from the NSF Geosciences Carbon and Water program (NSF ATM-0628582) and the WHOI W. Van Alan Clark Sr. Chair. D. Schimel acknowledges support from the NSF Biocomplexity in the Environment program (NSF EAR-0321918)

    Risky Decisions and Their Consequences: Neural Processing by Boys with Antisocial Substance Disorder

    Get PDF
    Adolescents with conduct and substance problems ("Antisocial Substance Disorder" (ASD)) repeatedly engage in risky antisocial and drug-using behaviors. We hypothesized that, during processing of risky decisions and resulting rewards and punishments, brain activation would differ between abstinent ASD boys and comparison boys.We compared 20 abstinent adolescent male patients in treatment for ASD with 20 community controls, examining rapid event-related blood-oxygen-level-dependent (BOLD) responses during functional magnetic resonance imaging. In 90 decision trials participants chose to make either a cautious response that earned one cent, or a risky response that would either gain 5 cents or lose 10 cents; odds of losing increased as the game progressed. We also examined those times when subjects experienced wins, or separately losses, from their risky choices. We contrasted decision trials against very similar comparison trials requiring no decisions, using whole-brain BOLD-response analyses of group differences, corrected for multiple comparisons. During decision-making ASD boys showed hypoactivation in numerous brain regions robustly activated by controls, including orbitofrontal and dorsolateral prefrontal cortices, anterior cingulate, basal ganglia, insula, amygdala, hippocampus, and cerebellum. While experiencing wins, ASD boys had significantly less activity than controls in anterior cingulate, temporal regions, and cerebellum, with more activity nowhere. During losses ASD boys had significantly more activity than controls in orbitofrontal cortex, dorsolateral prefrontal cortex, brain stem, and cerebellum, with less activity nowhere.Adolescent boys with ASD had extensive neural hypoactivity during risky decision-making, coupled with decreased activity during reward and increased activity during loss. These neural patterns may underlie the dangerous, excessive, sustained risk-taking of such boys. The findings suggest that the dysphoria, reward insensitivity, and suppressed neural activity observed among older addicted persons also characterize youths early in the development of substance use disorders

    Predictive use of the Maximum Entropy Production principle for Past and Present Climates

    Full text link
    In this paper, we show how the MEP hypothesis may be used to build simple climate models without representing explicitly the energy transport by the atmosphere. The purpose is twofold. First, we assess the performance of the MEP hypothesis by comparing a simple model with minimal input data to a complex, state-of-the-art General Circulation Model. Next, we show how to improve the realism of MEP climate models by including climate feedbacks, focusing on the case of the water-vapour feedback. We also discuss the dependence of the entropy production rate and predicted surface temperature on the resolution of the model

    Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)

    Get PDF
    Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems

    Effect of prenatal glucocorticoid treatment on size at birth among infants born at term gestation

    Get PDF
    ObjectiveTo determine whether prenatal treatment with a single course of glucocorticoids (GCs) affects size at birth among full-term infants independent of fetal size before GC administration or exposure to preterm labor (PTL).Study designIn all, 105 full-term infants were recruited into three study groups (30 GC treated; 60 controls matched for gestational age (GA) at birth and sex; and 15 PTL controls without GC exposure). Size of the infants was estimated before treatment using two-dimensional (2D) ultrasound and by direct measurement at birth.ResultsLength, weight and head circumference at birth were smaller among GC-treated infants compared with matched controls (P's<0.01), although fetal size did not differ before treatment (P's>0.2). Exposure to PTL did not account for this effect.ConclusionsPrenatal treatment with a single course of GCs was associated with a reduction in size at birth among infants born at term gestation. This effect cannot be explained by differences in fetal size before treatment or exposure to PTL

    Ten years of marketing approvals of anticancer drugs in Europe: regulatory policy and guidance documents need to find a balance between different pressures

    Get PDF
    Despite important progress in understanding the molecular factors underlying the development of cancer and the improvement in response rates with new drugs, long-term survival is still disappointing for most common solid tumours. This might be because very little of the modest gain for patients is the result of the new compounds discovered and marketed recently. An assessment of the regulatory agencies' performance may suggest improvements. The present analysis summarizes and evaluates the type of studies and end points used by the EMEA to approve new anticancer drugs, and discusses the application of current regulations. This report is based on the information available on the EMEA web site. We identified current regulatory requirements for anticancer drugs promulgated by the agency and retrieved them in the relevant directory; information about empirical evidence supporting the approval of drugs for solid cancers through the centralised procedure were retrieved from the European Public Assessment Report (EPAR). We surveyed documents for drug applications and later extensions from January 1995, when EMEA was set up, to December 2004. We identified 14 anticancer drugs for 27 different indications (14 new applications and 13 extensions). Overall, 48 clinical studies were used as the basis for approval; randomised comparative (clinical) trial (RCT) and Response Rate were the study design and end points most frequently adopted (respectively, 25 out of 48 and 30 out of 48). In 13 cases, the EPAR explicitly reported differences between arms in terms of survival: the range was 0–3.7 months, and the mean and median differences were 1.5 and 1.2 months. The majority of studies (13 out of 27, 48%) involved the evaluation of complete and/or partial tumour responses, with regard to the end points supporting the 27 indications. Despite the recommendations of the current EMEA guidance documents, new anticancer agents are still often approved on the basis of small single arm trials that do not allow any assessment of an ‘acceptable and extensively documented toxicity profile' and of end points such as response rate, time to progression or progression-free survival which at best can be considered indicators of anticancer activity and are not ‘justified surrogate markers for clinical benefit'. Anticipating an earlier than ideal point along the drug approval path and the use of not fully validated surrogate end points in nonrandomised trials looks like a dangerous shortcut that might jeopardise consumers' health, leading to unsafe and ineffective drugs being marketed and prescribed. The present Note for Guidance for new anticancer agents needs revising. Drugs must be rapidly released for patients who need them but not be at the expense of adequate knowledge about the real benefit of the drugs
    corecore