215 research outputs found
Specific involvement of atypical PKCĪ¶/PKMĪ¶ in spinal persistent nociceptive processing following peripheral inflammation in rat.
BACKGROUND: Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP), a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCĪ¶/PKMĪ¶ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. RESULTS: Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-Ī¶ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs) following formalin administration. In addition, Complete Freund's Adjuvant (CFA)-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCĪ¶/PKMĪ¶ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCĪ¶/PKMĪ¶ in dorsal horn neurons, specifically PKMĪ¶ phosphorylation in formalin rats. Finally, inhibition of PKCĪ¶/PKMĪ¶ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. CONCLUSIONS: These results suggest that PKCĪ¶, especially PKMĪ¶ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation
Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity
<p>Abstract</p> <p>Background</p> <p>Central neurotensin (NT) administration results in a naloxone-insensitive antinociceptive response in animal models of acute and persistent pain. Both NTS1 and NTS2 receptors were shown to be required for different aspects of NT-induced analgesia. We recently demonstrated that NTS2 receptors were extensively associated with ascending nociceptive pathways, both at the level of the dorsal root ganglia and of the spinal dorsal horn. Then, we found that spinally administered NTS2-selective agonists induced dose-dependent antinociceptive responses in the acute tail-flick test. In the present study, we therefore investigated whether activation of spinal NTS2 receptors suppressed the persistent inflammatory pain symptoms observed after intraplantar injection of formalin.</p> <p>Results</p> <p>We first demonstrated that spinally administered NT and NT69L agonists, which bind to both NTS1 and NTS2 receptors, significantly reduced pain-evoked responses during the inflammatory phase of the formalin test. Accordingly, pretreatment with the NTS2-selective analogs JMV-431 and levocabastine was effective in inhibiting the aversive behaviors induced by formalin. With resolution at the single-cell level, we also found that activation of spinal NTS2 receptors reduced formalin-induced <it>c-fos </it>expression in dorsal horn neurons. However, our results also suggest that NTS2-selective agonists and NTS1/NTS2 mixed compounds differently modulated the early (21ā39 min) and late (40ā60 min) tonic phase 2 and recruited endogenous pain inhibitory mechanisms integrated at different levels of the central nervous system. Indeed, while non-selective drugs suppressed pain-related behaviors activity in both part of phase 2, intrathecal injection of NTS2-selective agonists was only efficient in reducing pain during the late phase 2. Furthermore, assessment of the stereotypic pain behaviors of lifting, shaking, licking and biting to formalin also revealed that unlike non-discriminative NTS1/NTS2 analogs reversing all nociceptive endpoint behaviors, pure NTS2 agonists specifically inhibited paw lifting, supporting a role of NTS2 in spinal modulation of persistent nociception.</p> <p>Conclusion</p> <p>The present study provides the first demonstration that activation of NTS2 receptors produces analgesia in the persistent inflammatory pain model of formalin. The dichotomy between these two classes of compounds also indicates that both NTS1 and NTS2 receptors are involved in tonic pain inhibition and implies that these two NT receptors modulate the pain-induced behavioral responses by acting on distinct spinal and/or supraspinal neural circuits. In conclusion, development of NT agonists targeting both NTS1 and NTS2 receptors could be useful for chronic pain management.</p
Spreading of complex regional pain syndrome: not a random process
Complex regional pain syndrome (CRPS) generally remains restricted to one limb but occasionally may spread to other limbs. Knowledge of the spreading pattern of CRPS may lead to hypotheses about underlying mechanisms but to date little is known about this process. The objective is to study patterns of spread of CRPS from a first to a second limb and the factors associated with this process. One hundred and eighty-five CRPS patients were retrospectively evaluated. Coxās proportional hazards model was used to evaluate factors that influenced spread of CRPS symptoms. Eighty-nine patients exhibited CRPS in multiple limbs. In 72 patients spread from a first to a second limb occurred showing a contralateral pattern in 49%, ipsilateral pattern in 30% and diagonal pattern in 14%. A trauma preceded the onset in the second limb in 37, 44 and 91%, respectively. The hazard of spread of CRPS increased with the number of limbs affected. Compared to patients with CRPS in one limb, patients with CRPS in multiple limbs were on average 7Ā years younger and more often had movement disorders. In patients with CRPS in multiple limbs, spontaneous spread of symptoms generally follows a contralateral or ipsilateral pattern whereas diagonal spread is rare and generally preceded by a new trauma. Spread is associated with a younger age at onset and a more severely affected phenotype. We argue that processes in the spinal cord as well as supraspinal changes are responsible for spontaneous spread in CRPS
Current Developments in Intraspinal Agents for Cancer and Noncancer Pain
Since the late 1980s, intrathecal (IT) analgesic therapy has improved, and implantable IT drug delivery devices have become increasingly sophisticated. Physicians and patients now have myriad more options for agents and their combination, as well as for refining their delivery. As recently as 2007, The Polyanalgesic Consensus Conference of expert panelists updated its algorithm for drug selection in IT polyanalgesia. We review this algorithm and the emerging therapy included. This article provides an update on newly approved as well as emerging IT agents and the advances in technology for their delivery
Etoricoxib - preemptive and postoperative analgesia (EPPA) in patients with laparotomy or thoracotomy - design and protocols
<p>Abstract</p> <p>Background and Objective</p> <p>Our objective was to report on the design and essentials of the <it>Etoricoxib </it>protocol<it>- Preemptive and Postoperative Analgesia (EPPA) </it>Trial, investigating whether preemptive analgesia with cox-2 inhibitors is more efficacious than placebo in patients who receive either laparotomy or thoracotomy.</p> <p>Design and Methods</p> <p>The study is a 2 Ć 2 factorial armed, double blinded, bicentric, randomised placebo-controlled trial comparing (a) etoricoxib and (b) placebo in a pre- and postoperative setting. The total observation period is 6 months. According to a power analysis, 120 patients scheduled for abdominal or thoracic surgery will randomly be allocated to either the preemptive or the postoperative treatment group. These two groups are each divided into two arms. Preemptive group patients receive etoricoxib prior to surgery and either etoricoxib again or placebo postoperatively. Postoperative group patients receive placebo prior to surgery and either placebo again or etoricoxib after surgery (2 Ć 2 factorial study design). The Main Outcome Measure is the cumulative use of morphine within the first 48 hours after surgery (measured by patient controlled analgesia PCA). Secondary outcome parameters include a broad range of tests including sensoric perception and genetic polymorphisms.</p> <p>Discussion</p> <p>The results of this study will provide information on the analgesic effectiveness of etoricoxib in preemptive analgesia and will give hints on possible preventive effects of persistent pain.</p> <p>Trial registration</p> <p>NCT00716833</p
Selective inhibition of tropomyosin-receptor-kinase A (TrkA) reduces pain and joint damage in two rat models of inflammatory arthritis
Background: Inflammation is an essential component of arthritis pain. Nerve growth factor (NGF) plays a key role in acute and chronic pain states especially those associated with inflammation. NGF acts through tropomyosin-receptor-kinase A (TrkA). NGF blockade has reduced arthritis pain in clinical trials. We explored the mechanisms within the joint which may contribute to the analgesic effects of NGF by selectively inhibiting TrkA in carrageenan-induced or collagen-induced joint pain behaviour. The goal of the current study was to elucidate whether inflammation is central to the efficacy for NGF blockade.
Methods: Rats were injected in their left knees with 2 % carrageenan or saline. Collagen-induced arthritis (CIA) was induced by intradermal injections of a mixture of bovine type II collagen (0.2 mg) and incomplete Freundās adjuvant (0.2 mg). Oral doses (30 mg/kg) of AR786 or vehicle control were given twice daily after arthritis induction. Ibuprofen-treated (35 mg/kg, orally, once daily) rats with CIA were used as positive analgesic controls. Pain behaviour was measured as hind-limb weight-bearing asymmetry and hind-paw withdrawal thresholds to von Frey hair stimulation (carrageenan synovitis), or withdrawal to joint compression using a Randall Selitto device (CIA). Inflammation was measured as increased knee joint diameter and by histopathological analysis.
Results: Intra-articular injections of carrageenan or induction of CIA was each associated with pain behaviour and synovial inflammation. Systemic administration of the TrkA inhibitor AR786 reduced carrageenan-induced or CIA-induced pain behaviour to control values, and inhibited joint swelling and histological evidence of synovial inflammation and joint damage.
Conclusions: By using two models of varying inflammation we demonstrate for the first time that selective inhibition of TrkA may reduce carrageenan-induced or CIA-induced pain behaviour in rats, in part through potentially inhibiting synovial inflammation, although direct effects on sensory nerves are also likely. Our observations suggest that inflammatory arthritis causes pain and the presence of inflammation is fundamental to the beneficial effects (reduction in pain and pathology) of NGF blockade. Further research should determine whether TrkA inhibition may ameliorate human inflammatory arthritis
Analgesic management of an eight-year-old Springer Spaniel after amputation of a thoracic limb
Analgesic agents were administered perioperatively to an eight-year-old Springer Spaniel undergoing amputation of its right thoracic limb. The amputation was carried out due to a painful, infiltrative and poorly differentiated sarcoma involving the nerves of the brachial plexus. A combination of pre-emptive and multimodal perioperative analgesic strategies was used; including intravenous (IV) infusions of fentanyl, morphine, lidocaine and ketamine
- ā¦