36 research outputs found

    Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique

    Full text link
    [EN] The friction and dry sliding wear behavior of alumina and alumina-titania near-nanometric coatings were examined. Coatings were obtained by the suspension plasma spraying technique. Dry sliding wear tests were performed on a ball-on-disk tribometer, with an Al2O3 ball as counterpart material, a normal load of 2 N, a sliding distance of 1200 m and a sliding speed of 0.1 m/s. The effect of including TiO2 in the fabricated coatings on friction coefficient behavior, wear rates and wear damage patterns was determined. The addition of TiO2 to the coatings was found to greatly increase wear resistance by, for example, 2.6-fold for 40 wt% of TiO2. The analysis of the wear surface was correlated with microstructural parameters, mechanical properties and wear rates.The authors wish to thank for the Spanish Ministry of Economy and Competitiveness (MAT2012-38364-C03) and the Autonomous Government of Valencia for funding for the stay in SPCTS-UMR CNRS (France), and the French FCENANOSURF consortium funded by the French Ministry and Industry and local governments of Region Centre and Region Limousin.Klyatskina, E.; Espinosa Fernández, L.; Darut, G.; Segovia López, EF.; Salvador Moya, MD.; Montavon, G.; Agorges, H. (2015). Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique. Tribology Letters. 59(1):1-9. https://doi.org/10.1007/s11249-015-0530-5S19591Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings. Wiley: Hoboken (2008)Lampe, Th, Eisenberg, S., Cabeo, E.R.: Plasma surface engineering in the automotive industry—trends and future prospective. Surf. Coat. Technol. 174–175, 1–7 (2003)Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R.: Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237, 176–185 (2000)Kabacoff, L.T.: Nanoceramic coatings exhibit much higher toughness and wear resistance than conventional coatings. AMPITAC Newslett. 6(1), 37–42 (2002)Wang, M., Shaw, L.L.: Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings. Surf. Coat. Technol. 202, 34–44 (2007)Shaw, L.L., Goberman, D., Ren, R., Gell, M., Jing, S., Wang, Y., Xiao, T.D., Strutt, P.R.: The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions. Surf. Coat. Technol. 130, 1–8 (2000)Dahotre, N.B., Nayak, S.: Nanocoatings for engine application. Surf. Coat. Technol. 194(1), 58–67 (2005)Sathish, S., Geetha, M., Aruna, S.T., Balaji, N., Rajam, K.S., Asokamani, R.: Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications. Wear 271, 934–941 (2011)Pawlowski, L.: Finely grained nanometric and submicrometric coatings by thermal sparing: a review. Surf. Coat. Technol. 202, 4318–4328 (2008)Xiao, D., Wang, Y., Strutt, P.: Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties. Mater. Sci. Eng. 301, 80–89 (2001)Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng. 45, 1–88 (2004)Fauchais, P., Montavon, G., Bertrand, G.: From powders to thermally sprayed coatings. J. Therm. Spray Technol. 19, 56–80 (2010)Lima, R.S., Marple, B.R.: Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Technol. 16, 40–63 (2007)Fauchais, P., Etchart-Salas, R., Delbos, C., Tognonvi, M., Rat, V., Coudert, J.F., Chartier, T.: Suspension and solution plasma spraying of finely structured layers: potential application to SOFCs. J. Phys. D Appl. Phys. 40, 2394–2406 (2007)Ramachandran, K., Selvajaran, V., Ananthapadmanabhan, P.V., Sreekumar, K.P.: Microstructure, adhesion, micro hardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina–titania coatings. Thin Solid Films 315, 144–152 (1998)Lee, S.W., Morillo, C., Lira-Olivares, J., Kim, S.H., Sekino, T., Niihara, K., Hockey, B.J.: Tribological and microstructural analysis of Al2O3/13TiO2 nanocomposites to use in femoral head of hip replacement. Wear 225, 1040–1044 (2003)Dejang, N., Watcharapasorn, A., Wirojupatump, S., Niranatlumpong, P., Jiansirisomboon, S.: Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition. Surf. Coat. Technol. 204, 1651–1657 (2010)Yimaz, S.: An evaluation of plasma sprayed coatings based on Al2O3 and Al2O3–13wt% TiO2 with bond coat on pure titanium substrate. Ceram. Int. 35, 2017–2022 (2009)Fervel, V., Normand, B., Coddet, C.: Tribological behavior of plasma sprayed Al2O3-based cermet coatings. Wear 230(1), 70–77 (1999)Vargas, F., Ageorges, H., Fauchais, P., López, M.E.: Mechanical and a tribological performance of Al2O3 coatings elaborated by flame and plasma spraying. Surf. Coat. Technol. 205, 1132–1136 (2010)Bacciochini, A., Ilavsky, J., Montavon, G., Denoirjean, A., Ben-ettouil, F., Valette, S., Fauchais, P., Wittmann-teneze, K.: Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultra-small-angle X-ray scattering (USAXS). Mater. Sci. Eng. 528, 91–102 (2010)ASTM International: ASTM G99-03: Standard test method for wear testing with a pin-on-disc apparatus. ASTM annual book of standards. ASTM International: West Conshohocken (2003)Lancaster, K.: The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear 10, 103–107 (1967)Fauchais, P., Rat, V., Delbos, C., Fazilleau, J., Coudert, J.F., Chartier, T., Bianchi, L.: Understanding of suspension plasma spraying of finely structured coatings for SOFC. IEEE Plasma Sci. 33(2), 920–930 (2005)Bannier, E., Vicent, M., Rayón, E., Benavente, R., Salvador, M.D., Sánchez, E.: Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 suspension plasma sprayed coatings. Appl. Surf. Sci. 316, 141–146 (2014)Darut, G., Klyatskina, E., Valette, S., Carles, P., Denoirjean, A., Montavon, G., Ageorges, H., Segovia, F., Salvador, M.D.: Architecture and phases composition of suspension plasma sprayed alumina–titania sub-micrometer-sized coatings. Mater. Lett. 67, 241–244 (2012)Fauchais, P., Montavon, G.: Latest developments in suspension and liquid precursor thermal spraying. J. Therm. Spray Technol. 19(1–2), 226–239 (2010)Darut, G., Ben-Ettouli, F., Denoirjean, A., Montavon, G., Ageourges, H., Fauchais, P.: Dry sliding behavior of sub-micrometer-sized suspension plasma sprayed ceramic oxide coatings. J. Therm. Spray Technol. 19, 275–285 (2010)Tingaud, O., Bacciochini, A., Montavon, G., Denoirjean, A., Fauchais, P.: Suspension DC plasma spraying of thick finely-structured ceramic coatings: process manufacturing mechanisms. Surf. Coat. Technol. 203, 2157–2161 (2009)Guesama, S., Bounazef, M., Nardin, P., Sahraoui, T.: Wear behavior of alumina–titania coatings: analysis of process and parameters. Ceram. Int. 32, 13–19 (2006)Espinosa-Fernández, L., Borrell, A., Salvador, M.D., Gutierrez-Gonzalez, C.F.: Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear 307, 60–67 (2013)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state. Part I. Derivation. Wear 149, 1–12 (1991)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state sliding Part II. Numerical results and discussion. Wear 149, 13–25 (1991)Bolelli, G., Cannilo, V., Lusvarghi, L., Manfredini, T.: Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261, 1298–1315 (2006)Normand, B., Fervel, V., Coddet, C., Nikitine, V.: Tribological properties of plasma sprayed alumina–titania coatings: next term role and control of the microstructure. Surf. Coat. Technol. 123, 278–287 (2000)Hutchings, I.: Tribology: friction and wear of engineering materials. Mater. Des. 13, 187 (1992)Ahn, J., Hwang, B., Song, E.P., Lee, S., Kim, N.J.: Correlation of microstructure and wear resistance of Al2O3–TiO2 coatings plasma sprayed with nanopowders. Metall. Mater. Trans. A 37, 1851–1860 (2006)Erickson, L.C., Hawthorne, H.M., Troczynski, T.: Correlations between microstructural parameters, micromechanical properties and wear resistance of plasma sprayed ceramic coatings. Wear 250, 569–575 (2001)Song, E.P., Ahn, J., Lee, S., Kim, N.J.: Microstructure and wear resistance of nanostructured Al2O3–8 wt%TiO2 coatings plasma-sprayed with nanopowders. Surf. Coat. Technol. 201, 1309–1315 (2006)Tucker Jr., R.C.: ASM Handbook Volume 5A: Thermal Spray Technology. ASM International, Materials Park (2013)Stachowiack, G.W., Batchelor, A.: Engineering Tribology Handbook. Elsevier-Butterworth-Heineman: Oxford (2005)Fischer, T.E., Zhu, Z., Kim, H., Shin, D.S.: Genesis and role of wear debris in sliding wear of ceramics. Wear 245, 53–60 (2000)Lima, R.S., Moureau, C., Marple, B.R.: HVOF-sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3–TiO2 powders: an enhanced wear performance. J. Therm. Spray Technol. 16, 866 (2007

    Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Get PDF
    BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish

    Phenylthiourea Specifically Reduces Zebrafish Eye Size

    Get PDF
    Phenylthiourea (PTU) is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO) and sodium-iodide symporter (NIS), suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos

    Vertebrate Vitellogenin Gene Duplication in Relation to the “3R Hypothesis”: Correlation to the Pelagic Egg and the Oceanic Radiation of Teleosts

    Get PDF
    The spiny ray-finned teleost fishes (Acanthomorpha) are the most successful group of vertebrates in terms of species diversity. Their meteoric radiation and speciation in the oceans during the late Cretaceous and Eocene epoch is unprecedented in vertebrate history, occurring in one third of the time for similar diversity to appear in the birds and mammals. The success of marine teleosts is even more remarkable considering their long freshwater ancestry, since it implies solving major physiological challenges when freely broadcasting their eggs in the hyper-osmotic conditions of seawater. Most extant marine teleosts spawn highly hydrated pelagic eggs, due to differential proteolysis of vitellogenin (Vtg)-derived yolk proteins. The maturational degradation of Vtg involves depolymerization of mainly the lipovitellin heavy chain (LvH) of one form of Vtg to generate a large pool of free amino acids (FAA 150–200 mM). This organic osmolyte pool drives hydration of the ooctye while still protected within the maternal ovary. In the present contribution, we have used Bayesian analysis to examine the evolution of vertebrate Vtg genes in relation to the “3R hypothesis” of whole genome duplication (WGD) and the functional end points of LvH degradation during oocyte maturation. We find that teleost Vtgs have experienced a post-R3 lineage-specific gene duplication to form paralogous clusters that correlate to the pelagic and benthic character of the eggs. Neo-functionalization allowed one paralogue to be proteolyzed to FAA driving hydration of the maturing oocytes, which pre-adapts them to the marine environment and causes them to float. The timing of these events matches the appearance of the Acanthomorpha in the fossil record. We discuss the significance of these adaptations in relation to ancestral physiological features, and propose that the neo-functionalization of duplicated Vtg genes was a key event in the evolution and success of the teleosts in the oceanic environment

    Suspension DC plasma spraying of thick finely-structured ceramic coatings: Process manufacturing mechanisms

    No full text
    International audienceDue to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick (from 20 to 100 ÎŒm) nano- or sub-micron structured coatings exhibit better properties than conventional micron structured ones (e.g. higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, in particular for energy production, energy saving, diffusion and environmental barriers, etc. Suspension plasma spraying (SPS) permits to manufacture such finely-structured layers and consists in mechanically injecting within the plasma flow a liquid suspension of sub-micrometric-sized or nano-sized particles through an injector of diameter of the order of one hundred micrometers. Upon penetration within the DC plasma jet, two phenomena occur sequentially: droplet fragmentation and then solvent evaporation. Particles are then processed by the plasma flow (heat and momentum transfers) prior to their impact, flattening and solidification upon the surface to be covered. Compared to plasma spraying of micrometer-sized particles (APS), SPS exhibit several major differences : i) a more pronounced sensitivity to electric are root fluctuation requiring to operate the spray gun in a relatively stable mode (take over) unless to process inhomogeneously the suspension which would results in heterogeneous coating structure; ii) a shorter spray distance (since small particles decelerate faster than bigger ones) leading to higher thermal flux transmitted from the plasma flow to the substrate (5 to 10 times higher than conventional plasma spraying); iii) an emphasized thermophoresis effect; iv) a typical cohesive structure made of the stacking of granular and flattened particles with low density of stacking defects. This paper aims at presenting recent developments carried-out on this process in terms of process optimization and coating manufacturing mechanisms

    Suspension plasma spraying of zirconia coatings : process and coating structure

    Get PDF
    International audienceSuspension plasma spraying (SPS) permits to manufacture finely structured coatings (nano- or submicron-sized) coatings. Compared to conventional plasma spraying, SPS exhibit several major differences: i) a more pronounced sensitivity to arc root fluctuations; ii) a shorter spray distance; iii) a higher thermal flux transmitted from the plasma flow to the substrate. Several operating parameters play relevant roles in the suspension processing and the coating architecture

    Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying

    No full text
    International audienceSuspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 lm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 lm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures
    corecore