2,041 research outputs found
Continuous Monitoring of Distributed Data Streams over a Time-based Sliding Window
The past decade has witnessed many interesting algorithms for maintaining
statistics over a data stream. This paper initiates a theoretical study of
algorithms for monitoring distributed data streams over a time-based sliding
window (which contains a variable number of items and possibly out-of-order
items). The concern is how to minimize the communication between individual
streams and the root, while allowing the root, at any time, to be able to
report the global statistics of all streams within a given error bound. This
paper presents communication-efficient algorithms for three classical
statistics, namely, basic counting, frequent items and quantiles. The
worst-case communication cost over a window is bits for basic counting and words for the remainings, where is the number of distributed
data streams, is the total number of items in the streams that arrive or
expire in the window, and is the desired error bound. Matching
and nearly matching lower bounds are also obtained.Comment: 12 pages, to appear in the 27th International Symposium on
Theoretical Aspects of Computer Science (STACS), 201
Hedonic pricing models for metropolitan bus services
Conventional studies on the pricing of bus services use the cost structure to explain bus fares. In this paper, a hedonic pricing model for bus services in Hong Kong is estimated. The contributions of cost and market factors are uncovered. It is found that the cost factors dominate the determination of bus fares. In contrast to our expectation, bus fares do not react to competition faced by bus companies. Moreover, except the three cross-harbour tunnels, the bus fare has no direct relationship with the tolls of other tunnels. Our model serves well as a reference tool for bus companies to set market-acceptable bus fares.Hedonic Pricing Model, Bus Fares, Kowloon Motor Bus.
Use of graphene as protection film in biological environments
Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu(2+) ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application
SOAP3-dp: Fast, Accurate and Sensitive GPU-based Short Read Aligner
To tackle the exponentially increasing throughput of Next-Generation
Sequencing (NGS), most of the existing short-read aligners can be configured to
favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging
the computational power of both CPU and GPU with optimized algorithms, delivers
high speed and sensitivity simultaneously. Compared with widely adopted
aligners including BWA, Bowtie2, SeqAlto, GEM and GPU-based aligners including
BarraCUDA and CUSHAW, SOAP3-dp is two to tens of times faster, while
maintaining the highest sensitivity and lowest false discovery rate (FDR) on
Illumina reads with different lengths. Transcending its predecessor SOAP3,
which does not allow gapped alignment, SOAP3-dp by default tolerates alignment
similarity as low as 60 percent. Real data evaluation using human genome
demonstrates SOAP3-dp's power to enable more authentic variants and longer
Indels to be discovered. Fosmid sequencing shows a 9.1 percent FDR on newly
discovered deletions. SOAP3-dp natively supports BAM file format and provides a
scoring scheme same as BWA, which enables it to be integrated into existing
analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and
Tianhe-1A.Comment: 21 pages, 6 figures, submitted to PLoS ONE, additional files
available at "https://www.dropbox.com/sh/bhclhxpoiubh371/O5CO_CkXQE".
Comments most welcom
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Social Europe. No 2/87
BACKGROUND: DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA methylation at promoters is widely recognized to be associated with transcriptional repression, many aspects of DNA methylation remain not fully understood, including the quantitative relationships between DNA methylation and expression levels, and the individual roles of promoter and gene body methylation. RESULTS: Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA sequencing data from human samples and cell lines. We find that while promoter methylation inversely correlates with gene expression as generally observed, the repressive effect is clear only on genes with a very high DNA methylation level. By means of statistical modeling, we find that DNA methylation is indicative of the expression class of a gene in general, but gene body methylation is a better indicator than promoter methylation. These findings are general in that a model constructed from a sample or cell line could accurately fit the unseen data from another. We further find that promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify low expression. Finally, we obtain increased modeling power by integrating histone modification data with the DNA methylation data, showing that neither type of information fully subsumes the other. CONCLUSION: Our results suggest that DNA methylation outside promoters also plays critical roles in gene regulation. Future studies on gene regulatory mechanisms and disease-associated differential methylation should pay more attention to DNA methylation at gene bodies and other non-promoter regions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0408-0) contains supplementary material, which is available to authorized users
Notch signaling during human T cell development
Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse
Use of graphene as protection film in biological environments
Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu2+ ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application
SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read Aligner
To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously. Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, CUSHAW2, GEM and GPU-based aligners BarraCUDA and CUSHAW, SOAP3-dp was found to be two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate (FDR) on Illumina reads with different lengths. Transcending its predecessor SOAP3, which does not allow gapped alignment, SOAP3-dp by default tolerates alignment similarity as low as 60%. Real data evaluation using human genome demonstrates SOAP3-dp's power to enable more authentic variants and longer Indels to be discovered. Fosmid sequencing shows a 9.1% FDR on newly discovered deletions. SOAP3-dp natively supports BAM file format and provides the same scoring scheme as BWA, which enables it to be integrated into existing analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and Tianhe-1A
- …
