19 research outputs found
Linking rattiness, geography and environmental degradation to spillover Leptospira infections in marginalised urban settings: An eco-epidemiological community-based cohort study in Brazil
Background: Zoonotic spillover from animal reservoirs is responsible for a significant global public health burden, but the processes that promote spillover events are poorly understood in complex urban settings. Endemic transmission of Leptospira, the agent of leptospirosis, in marginalised urban communities occurs through human exposure to an environment contaminated by bacteria shed in the urine of the rat reservoir. However, it is unclear to what extent transmission is driven by variation in the distribution of rats or by the dispersal of bacteria in rainwater runoff and overflow from open sewer systems. Methods: We conducted an eco-epidemiological study in a high-risk community in Salvador, Brazil, by prospectively following a cohort of 1401 residents to ascertain serological evidence for leptospiral infections. A concurrent rat ecology study was used to collect information on the fine-scale spatial distribution of 'rattiness', our proxy for rat abundance and exposure of interest. We developed and applied a novel geostatistical framework for joint spatial modelling of multiple indices of disease reservoir abundance and human infection risk. Results: The estimated infection rate was 51.4 (95%CI 40.4, 64.2) infections per 1000 follow-up events. Infection risk increased with age until 30 years of age and was associated with male gender. Rattiness was positively associated with infection risk for residents across the entire study area, but this effect was stronger in higher elevation areas (OR 3.27 95% CI 1.68, 19.07) than in lower elevation areas (OR 1.14 95% CI 1.05, 1.53). Conclusions: These findings suggest that, while frequent flooding events may disperse bacteria in regions of low elevation, environmental risk in higher elevation areas is more localised and directly driven by the distribution of local rat populations. The modelling framework developed may have broad applications in delineating complex animal-environment-human interactions during zoonotic spillover and identifying opportunities for public health intervention
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs:a case study of rattiness in a low-income urban Brazilian community
A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease
Population dynamics of synanthropic rodents after a chemical and infrastructural intervention in an urban low-income community.
Synanthropic rodents are ubiquitous in low-income communities and pose risks for human health, as they are generally resistant to control programs. However, few or no studies have evaluated the long-term effect of chemical and infrastructural interventions on rodent population dynamics, especially in urban low-income communities, or evaluated the potential recovery of their population following interventions. We conducted a longitudinal study in a low-income community in the city of Salvador (BA, Brazil) to characterize the effect of interventions (chemical and infrastructural) on the dynamics of rodent population, and documented the post-intervention recovery of their population. We evaluated the degree of rodent infestation in 117 households/sampling points over three years (2014-2017), using tracking plates, a proxy for rodent abundance/activity. We reported a significant lower rodent activity/abundance after the chemical and infrastructural interventions (Z = -4.691 (p < 0.001)), with track plate positivity decreasing to 28% from 70% after and before interventions respectively. Therefore, the combination of chemical and infrastructural interventions significantly decreased the degree of rodent infestation in the study area. In addition, no rodent population rebound was recorded until almost a year post-intervention, and the post-intervention infestation level did not attain the pre-intervention level all through the study. Moreover, among pre-treatment conditions, access to sewer rather than the availability of food was the variable most closely associated with household rodent infestation. Our study indicates that Integrated Pest Management (IPM)-approaches are more effective in reducing rodent infestation than the use of a single method. Our findings will be useful in providing guidance for long-term rodent control programs, especially in urban low-income communities
Intoxicação por monofluoroacetato em animais
O monofluoroacetato (MF) ou ácido monofluoroacético é utilizado na Austrália e Nova Zelândia no controle populacional de mamíferos nativos ou exóticos. O uso desse composto é proibido no Brasil, devido ao risco de intoxicação de seres humanos e de animais, uma vez que a substância permanece estável por décadas. No Brasil casos recentes de intoxicação criminosa ou acidental têm sido registrados. MF foi identificado em diversas plantas tóxicas, cuja ingestão determina "morte súbita"; de bovinos na África do Sul, Austrália e no Brasil. O modo de ação dessa substância baseia-se na formação do fluorocitrato, seu metabólito ativo, que bloqueia competitivamente a aconitase e o ciclo de Krebs, o que reduz produção de ATP. As espécies animais têm sido classificadas nas quatro Categorias em função do efeito provocado por MF: (I) no coração, (II) no sistema nervoso central (III) sobre o coração e sistema nervoso central ou (IV) com sintomatologia atípica. Neste trabalho, apresenta-se uma revisão crítica atualizada sobre essa substância. O diagnóstico da intoxicação por MF é realizado pelo histórico de ingestão do tóxico, pelos achados clínicos e confirmado por exame toxicológico. Uma forma peculiar de degeneração hidrópico-vacuolar das células epiteliais dos túbulos uriníferos contorcidos distais tem sido considerada como característica dessa intoxicação em algumas espécies. O tratamento da intoxicação por MF é um desafio, pois ainda não se conhece um agente capaz de reverte-la de maneira eficaz; o desfecho geralmente é fata
Technikhistorische Aspekte des 'Aufbau Ost' der Deutschen Telekom. Voraussetzungen und Kontext
Bothropoides insularis (jararaca-ilhoa) is a native endemic snake limited to the specific region of Queimada Island, on Sao Paulo coast. Several local and systemic effects have been described due to envenomation caused by it, such as edema, tissue necrosis, hemorrhage and acute renal failure. Our previous studies have shown that Bothropoides insularis venom (BinsV) demonstrated important functional and morphologic alterations in rat isolated kidney, especially decrease in tubular electrolyte transport, osmotic clearance and tubular necrosis. In order to elucidate the direct nephrotoxicity mechanism, the aim of the present study was to investigate BinsV cytotoxicity effect on renal epithelial cells. The treatment with BinsV over MDCK culture decreased cell viability in all concentrations tested with IC50 of 9 mu g/mL. BinsV was able to induce membrane rupture and cell death with phosphatidilserine externalization. Furthermore, BinsV induced ROS overproduction and mitochondrial membrane potential collapse, as well as Bax translocation and caspases 3 and 7 expression. Therefore, these events might be responsible by BinsV-induced cell death caused by mitochondrial dysfunction and ROS overproduction in the direct cytotoxicity process. (C) 2014 Elsevier Ltd. All rights reserved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
Effects of Tityus stigmurus (Thorell 1876) (Scorpiones: Buthidae) venom in isolated perfused rat kidneys
ABSTRACT Scorpions belonging to the Tityus genus are of medical interest in Brazil. Among them, Tityus stigmurus is the main scorpion responsible for stings in the Northeast region. After a sting, the scorpion venom distributes rapidly to the organs, reaching the kidneys quickly. However, there are few studies concerning the renal pathophysiology of scorpion poisoning. In this study, we evaluated the effects of T. stigmurus venom (TsV) on renal parameters in isolated rat kidneys. Wistar rats (n = 6), weighing 250-300 g, were perfused with Krebs-Henseleit solution containing 6 g/100 mL bovine serum albumin. TsV at 0.3 and 1.0 μg/mL was tested, and the effects on perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and electrolyte excretion were analyzed. Effects were observed only at TsV concentration of 1.0 μg/mL, which increased PP (controlPP40' = 92.7 ± 1.95; TsVPP40' = 182.0 ± 4.70* mmHg, *p < 0.05), RVR (controlRVR40' = 3.28 ± 0.23 mmHg; TstRVR40' = 6.76 ± 0.45* mmHg, *p < 0.05), UF (controlUF50' = 0.16 ± 0.04; TstUF50' = 0.60 ± 0.10* mL/g/min,*p < 0.05), GFR and electrolyte excretion, with histological changes that indicate renal tubular injury. In conclusion, T. stigmurus venom induces a transient increase in PP with tubular injury, both of which lead to an augmented electrolyte excretion