75 research outputs found

    Dynamic clamp with StdpC software

    Get PDF
    Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, for spike timing-dependent plasticity clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real-time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments through an intuitive and powerful interface with a minimal initial lead time of a few hours. After initial configuration, experimental results can be generated within minutes of establishing cell recording

    Limitations of perturbative techniques in the analysis of rhythms and oscillations

    Get PDF
    Perturbation theory is an important tool in the analysis of oscillators and their response to external stimuli. It is predicated on the assumption that the perturbations in question are “sufficiently weak”, an assumption that is not always valid when perturbative methods are applied. In this paper, we identify a number of concrete dynamical scenarios in which a standard perturbative technique, based on the infinitesimal phase response curve (PRC), is shown to give different predictions than the full model. Shear-induced chaos, i.e., chaotic behavior that results from the amplification of small perturbations by underlying shear, is missed entirely by the PRC. We show also that the presence of “sticky” phase–space structures tend to cause perturbative techniques to overestimate the frequencies and regularity of the oscillations. The phenomena we describe can all be observed in a simple 2D neuron model, which we choose for illustration as the PRC is widely used in mathematical neuroscience

    Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons

    Get PDF
    The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies

    Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish

    Get PDF
    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome

    The response of a classical Hodgkin–Huxley neuron to an inhibitory input pulse

    Get PDF
    A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30–80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchronization by an inhibitory input pulse often fails for populations of classical Hodgkin–Huxley neurons. Our reasoning suggests that in general, synchronization by inhibitory input pulses can fail when the transition of the target neurons from rest to spiking involves a Hopf bifurcation, especially when inhibition is shunting, not hyperpolarizing. Surprisingly, synchronization is more likely to fail when the inhibitory pulse is stronger or longer-lasting. These findings have potential implications for the question which neurons participate in brain rhythms, in particular in gamma oscillations

    The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells

    Get PDF
    Recent studies have shown that stellate cells (SCs) of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic) conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis), we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. ‘In vitro’ experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current

    Emergent Functional Properties of Neuronal Networks with Controlled Topology

    Get PDF
    The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity
    corecore