13,766 research outputs found

    Making Sense of ESG with the SEC

    Get PDF

    Asymptotic tracking by funnel control with internal models

    Full text link
    Funnel control achieves output tracking with guaranteed tracking performance for unknown systems and arbitrary reference signals. In particular, the tracking error is guaranteed to satisfy time-varying error bounds for all times (it evolves in the funnel). However, convergence to zero cannot be guaranteed, but the error often stays close to the funnel boundary, inducing a comparatively large feedback gain. This has several disadvantages (e.g. poor tracking performance and sensitivity to noise due to the underlying high-gain feedback principle). In this paper, therefore, the usually known reference signal is taken into account during funnel controller design, i.e. we propose to combine the well-known internal model principle with funnel control. We focus on linear systems with linear reference internal models and show that under mild adjustments of funnel control, we can achieve asymptotic tracking for a whole class of linear systems (i.e. without relying on the knowledge of system parameters)

    First High-resolution Spectroscopic Observations of an Erupting Prominence Within a Coronal Mass Ejection by the Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and 3D geometry diagnostics. We report the first observations by the Interface Region Imaging Spectrograph (IRIS) mission of a spectacular fast CME/prominence eruption associated with an equivalent X1.6 flare on 2014 May 9. The maximum plane-of-sky and Doppler velocities of the eruption are 1200 and 460 km/s, respectively. There are two eruption components separated by ~200 km/s in Doppler velocity: a primary, bright component and a secondary, faint component, suggesting a hollow, rather than solid, cone-shaped distribution of material. The eruption involves a left-handed helical structure undergoing counter-clockwise (viewed top-down) unwinding motion. There is a temporal evolution from upward eruption to downward fallback with less-than-free-fall speeds and decreasing nonthermal line widths. We find a wide range of Mg II k/h line intensity ratios (less than ~2 expected for optically-thin thermal emission): the lowest ever-reported median value of 1.17 found in the fallback material and a comparably high value of 1.63 in nearby coronal rain and intermediate values of 1.53 and 1.41 in the two eruption components. The fallback material exhibits a strong (>5σ> 5 \sigma) linear correlation between the k/h ratio and the Doppler velocity as well as the line intensity. We demonstrate that Doppler dimming of scattered chromospheric emission by the erupted material can potentially explain such characteristics.Comment: 12 pages, 6 figures, accepted by ApJ (Feb 15, 2015

    Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO2

    Get PDF
    Particle/particle interfaces play a crucial role in the functionality and performance of nanocrystalline materials such as mesoporous metal oxide electrodes. Defects at these interfaces are known to impede charge separation via slow-down of transport and increase of charge recombination, but can be passivated via electrochemical doping (i.e., incorporation of electron/proton pairs), leading to transient but large enhancement of photoelectrode performance. Although this process is technologically very relevant, it is still poorly understood. Here we report on the electrochemical characterization and the theoretical modeling of electron traps in nanocrystalline rutile TiO2 films. Significant changes in the electrochemical response of porous films consisting of a random network of TiO2 particles are observed upon the electrochemical accumulation of electron/proton pairs. The reversible shift of a capacitive peak in the voltammetric profile of the electrode is assigned to an energetic modification of trap states at particle/particle interfaces. This hypothesis is supported by first-principles theoretical calculations on a TiO2 grain boundary, providing a simple model for particle/particle interfaces. In particular, it is shown how protons readily segregate to the grain boundary (being up to 0.6 eV more stable than in the TiO2 bulk), modifying its structure and electron-trapping properties. The presence of hydrogen at the grain boundary increases the average depth of traps while at the same time reducing their number compared to the undoped situation. This provides an explanation for the transient enhancement of the photoelectrocatalytic activity toward methanol photooxidation which is observed following electrochemical hydrogen doping of rutile TiO2 nanoparticle electrodes

    An Unsplit Godunov Method for Ideal MHD via Constrained Transport in Three Dimensions

    Full text link
    We present a single step, second-order accurate Godunov scheme for ideal MHD which is an extension of the method described by Gardiner & Stone (2005) to three dimensions. This algorithm combines the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We describe the calculation of the PPM interface states for 3D ideal MHD which must include multidimensional ``MHD source terms'' and naturally respect the balance implicit in these terms by the B=0{\bf\nabla\cdot B}=0 condition. We compare two different forms for the CTU integration algorithm which require either 6- or 12-solutions of the Riemann problem per cell per time-step, and present a detailed description of the 6-solve algorithm. Finally, we present solutions for test problems to demonstrate the accuracy and robustness of the algorithm.Comment: Extended version of the paper accepted for publication in JC

    What Makes Digital Technology? A Categorization Based on Purpose

    Get PDF
    Digital technology (DT) is creating and shaping today’s world. Building on its identity and history of technology research, the Information Systems discipline is at the forefront of understanding the nature of DT and related phenomena. Understanding the nature of DT requires understanding its purposes. Because of the growing number of DTs, these purposes are diversifying, and further examination is needed. To that end, we followed an organizational systematics paradigm and present a taxonomic theory for DT that enables its classification through its diverse purposes. The taxonomic theory comprises a multi-layer taxonomy of DT and purpose-related archetypes, which we inferred from a sample of 92 real-world DTs. In our empirical evaluation, we assessed reliability, validity, and usefulness of the taxonomy and archetypes. The taxonomic theory exceeds existing technology classifications by being the first that (1) has been rigorously developed, (2) considers the nature of DT, (3) is sufficiently concrete to reflect the diverse purposes of DT, and (4) is sufficiently abstract to be persistent. Our findings add to the descriptive knowledge on DT, advance our understanding of the diverse purposes of DT, and lay the ground for further theorizing. Our work also supports practitioners in managing and designing DTs

    Net charge fluctuations in Au+Au collisions at sqrt[sNN ]=130 GeV

    Get PDF
    We present the results of charged particle fluctuations measurements in Au+Au collisions at sqrt[sNN ]=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark-gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a heavy ion jet interaction generation model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.alle Autoren: J. Adams, C. Adler, M. M. Aggarwal, Z. Ahammed, J. Amonett, B. D. Anderson, M. Anderson, D. Arkhipkin, G. S. Averichev, S. K. Badyal, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, B. I. Bezverkhny, S. Bhardwaj, P. Bhaskar, A. K. Bhati, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, M. Botje, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, X. Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, A. Cardenas, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, H. F. Chen, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, D. Das, S. Das, A. A. Derevschikov, L. Didenko, T. Dietel, X. Dong, J. E. Draper, F. Du, A. K. Dubey, V. B. Dunin, J. C. Dunlop, M. R. Dutta Majumdar, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, P. Filip, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, M. S. Ganti, T. D. Gutierrez, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, P. Ghosh, J. E. Gonzalez, O. Grachov, V. Grigoriev, S. Gronstal, D. Grosnick, M. Guedon, S. M. Guertin, A. Gupta, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, M. Heinz, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, S. L. Huang, T. J. Humanic, G. Igo, A. Ishihara, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, S. Kabana, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, D. D. Koetke, T. Kolleger, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, A. Kumar, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, J. Lauret, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, C. Li, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, Y. G. Ma, D. Magestro, S. Mahajan, L. K. Mangotra, D. P. Mahapatra, R. Majka, R. Manweiler, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, C. Mironov, D. Mishra, J. Mitchell, B. Mohanty, L. Molnar, C. F. Moore, M. J. Mora-Corral, V. Morozov, M. M. de Moura, M. G. Munhoz, B. K. Nandi, S. K. Nayak, T. K. Nayak, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, S. K. Pal, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A. Petrov, S. C. Phatak, R. Picha, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, M. Potekhin, E. Potrebenikova, B. V. K. S. Potukuchi, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, R. Raniwala, S. Raniwala, O. Ravel, S. V. Razin, D. Reichhold, J. G. Reid, G. Renault, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, L. J. Ruan, V. Rykov, R. Sahoo, I. Sakrejda, S. Salur, J. Sandweiss, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, K. E. Shestermanov, S. S. Shimanskii, R. N. Singaraju, F. Simon, G. Skoro, N. Smirnov, R. Snellings, G. Sood, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, S. Stanislaus, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, D. Thein, J. H. Thomas, V. Tikhomirov, M. Tokarev, M. B. Tonjes, S. Trentalange, R. E. Tribble, M. D. Trivedi, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, A. N. Vasiliev, M. Vasiliev, S. E. Vigdor, Y. P. Viyogi, S. A. Voloshin, W. Waggoner, F. Wang, G. Wang, X. L. Wang, Z. M. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, J. Wu, N. Xu, Z. Xu, Z. Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, H. Y. Zhang, W. M. Zhang, Z. P. Zhang, P. A. Zołnierczuk, R. Zoulkarneev, J. Zoulkarneeva, and A. N. Zubare
    corecore