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Abstract: 

Digital technology (DT) is creating and shaping today’s world. Building on its identity and history of technology 
research, the Information Systems discipline is at the forefront of understanding the nature of DT and related 
phenomena. Understanding the nature of DT requires understanding its purposes. Because of the growing number of 
DTs, these purposes are diversifying, and further examination is needed. To that end, we followed an organizational 
systematics paradigm and present a taxonomic theory for DT that enables its classification through its diverse 
purposes. The taxonomic theory comprises a multi-layer taxonomy of DT and purpose-related archetypes, which we 
inferred from a sample of 92 real-world DTs. In our empirical evaluation, we assessed reliability, validity, and 
usefulness of the taxonomy and archetypes. The taxonomic theory exceeds existing technology classifications by 
being the first that (1) has been rigorously developed, (2) considers the nature of DT, (3) is sufficiently concrete to 
reflect the diverse purposes of DT, and (4) is sufficiently abstract to be persistent. Our findings add to the descriptive 
knowledge on DT, advance our understanding of the diverse purposes of DT, and lay the ground for further theorizing. 
Our work also supports practitioners in managing and designing DTs. 

Keywords: Digital Technology, Information Technology, Purpose-related Classification, Taxonomy, Taxonomic 
Theory, Cluster Analysis. 

 

[Department statements, if appropriate, will be added by the editors. Teaching cases and panel reports will have a 
statement, which is also added by the editors.] 

[Note: this page has no footnotes.] 

This manuscript underwent [editorial/peer] review. It was received xx/xx/20xx and was with the authors for XX months for XX 
revisions. [firstname lastname] served as Associate Editor.] or The Associate Editor chose to remain anonymous.] 

 

http://aisel.aisnet.org/cais/


557 What Makes Digital Technology? A Categorization Based on Purpose 

 

  Accepted Manuscript 

 

1 Introduction 

Today’s world is unimaginable without digital technology (DT). Individuals and organizations participate in 
countless sociotechnical systems (Mousavi Baygi, Introna, & Hultin, 2021; Tilson, Lyytinen, & Sørensen, 
2010), in which DT supports or enables, among others, mobility (D’Mello & Sahay, 2007), interconnectivity 
(Sandberg & Tsoukas, 2020) and virtuality (Schultze, 2014). As a result, novel DT-driven opportunities 
emerge with enormous potential from an economic (Legner et al., 2017; Oberländer, Roglinger, & 
Rosemann, 2021) as well as a societal perspective (Briel et al., 2021; Kreuzer, Lindenthal, Oberländer, & 
Röglinger, 2022; Tim, Cui, & Sheng, 2021). However, in a society where DTs are essential mediators of 
reality (Baskerville, Myers, & Yoo, 2020), the economic and societal transformations induced by DTs are 
far from being complete. Given DT’s central role representing, creating, and shaping reality, 
understanding its nature is of crucial importance for research and practice alike. 

The DT construct has evolved from a rich body of knowledge on the nature of technology, to which the 
Information Systems (IS) discipline has contributed significantly. To name but a few, Kline (1985) 
addressed the fundamental question of “what is technology” (p. 1) and uncovered that understanding 
technology depends on its purpose in different contexts, i.e., as an element of sociotechnical systems. 
Orlikowski (1992) provided a conceptualization of technology, where she unfolded its duality as something 
that can be a product and medium of human actions as well as something that can be institutionalized in 
an organization. IS research has always put technology at its center (e.g., Hirschheim and Klein (1989) 
and Klein and Hirschheim (1989)) where information technology (IT) represents the central component of 
information systems (Davis, 2000). IT is defined as the use of technology as a collector, storage, 
processor, and transmitter of information and covers a digital and a physical perspective (i.e., soft- and 
hardware) (Boaden & Lockett, 1991). Starting as a mere tool separated from individuals and their work (El 
Sawy, 2003), over time, IT has evolved into an integral component of products, services, and individuals’ 
lives, which broadened the understanding of IT putting more emphasis on its digital characteristics 
(Kallinikos & Mariátegui, 2011; Tarafdar & Tanriverdi, 2018). As a result, the term DT emerged referring to 
technology that is embedded in products and services and can hardly be disentangled from the underlying 
IT infrastructure (Henfridsson & Bygstad, 2013; Yoo, Henfridsson, & Lyytinen, 2010). 

Since then, DT has become one of the core research constructs in multiple IS research streams which 
focus on DT-related phenomena such as digitalization (Caputo, Pizzi, Pellegrini, & Dabić, 2021; Legner et 
al., 2017), digital transformation (Gimpel et al., 2018; Vial, 2019), digital innovation (Ciriello, Richter, & 
Schwabe, 2018; Nambisan, Lyytinen, Majchrzak, & Song, 2017), and digital entrepreneurship (Briel et al., 
2021; Kreuzer et al., 2022). Furthermore, considerable effort has been put into extending our 
understanding of the nature of technology in digital contexts by studying digital objects and artifacts. 
Faulkner and Runde (2013, 2019) presented a theory of digital objects, i.e., “objects whose component 
parts include one or more bitstrings” (Faulkner & Runde, 2019, p. 1285). Moreover, Kallinikos, Aaltonen, 
and Marton (2013) presented an ambivalent ontology of digital artifacts and Ciriello, Richter, and Schwabe 
(2019) studied paradoxes of digital artifacts usages in innovation practices. To delineate digital objects 
from DT, most recently, Hund, Wagner, Beimborn, and Weitzel (2021) refined the definition of DT outlining 
that a “[…] digital object becomes a digital technology when it is assigned a meaning, namely a purpose 
for applying it […]” (p. 5). Along these lines and closing the loop back to Kline’s (1985) work, connecting 
DT and purpose has a long history in research. The understanding of DT depends on its purpose in 
different contexts (Ciriello et al., 2019; Kline, 1985), whereby purpose relates to the social positioning of a 
DT within a sociotechnical system, e.g., related functions, and associated rights and responsibilities 
(Faulkner & Runde, 2019). Essentially, the purpose of a DT is determined by the social actors using it 
(Hund et al., 2021). 

Following these important insights, it becomes obvious that understanding the nature of DT is closely 
related to understanding the purpose of DT within a social context. However, owing to its embeddedness 
in products and services and its immersive role in sociotechnical systems, DT is associated with manifold 
purposes today, such as data collection, insight generation and interaction (Bharadwaj, El Sawy, Pavlou, 
& Venkatraman, 2013; Pavlou & El Sawy, 2010). To avoid being overwhelmed by the growing number and 
high diversity of specific DTs, IS researchers would benefit from a useful classification of DTs through 
their purposes in order to describe, understand, and analyze DT more effectively (Gregor, 2006; Kundisch 
et al., 2021). While current research already provides valuable and mature knowledge on the nature of DT 
(see Section 2 for details), existing classifications do not account for the variety of DT purposes in a way 
that (1) has been rigorously developed, (2) accounts for the characteristics of DT, (3) is sufficiently 
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concrete to appropriately reflect the diverse purposes DT, and (4) is sufficiently abstract to be persistent 
(over a reasonably long period of time). First, for example, professional trend reports, such as the Gartner 
Hype Cycle for Emerging Technologies (GHC), include lists of technology names mapped to cycle 
phases, however, without empirically validating results or providing insights into technology purposes. 
Second, existing approaches do not focus on DT or specifically consider (digital) characteristics of 
technology as they were built for similar but not synonymous constructs, e.g., Davis’s (2000) classification 
of (traditional) IT. Third, existing classifications barely substantiate DT purposes. Related studies often 
name purpose categories as a component of their definition of DT. Further elaborating on them is not their 
primary focus (e.g., Vial (2019)). For example, Bharadwaj et al. (2013) defined DT as a combination of 
information, computing, communication, and connectivity technologies, where neither of these purposes 
nor possible combinations are specified. Fourth, existing approaches focus on one or a sub-set of DTs 
and are hence not useful for providing a holistic overview of DT purposes, e.g., van der Valk, Haße, 
Möller, and Otto (2021) focusing on digital twins. 

Against this backdrop, we argue that a useful classification of DTs through their purposes (henceforth: 
purpose-related classification) will not only serve scientific progress but be also relevant in practice. On 
the one hand, a purpose-related classification would enable us to abstract from individual DTs when 
studying or theorizing related phenomena and, instead, focus on selected types of DTs sharing the same 
purpose. Further, such a classification would provide initial insights on an emergent DT by classifying it 
through its purpose. On the other hand, when taking DT decisions in practice, managers are currently left 
alone with the diversity of DTs (Adomavicius, Bockstedt, Gupta, & Kauffman, 2008), usually aiming to 
make specific DT decisions late in product development or process redesign initiatives. A purpose-related 
classification of DTs would support managers in the structured assessment and selection of the growing 
number of DTs as part of strategic initiatives. At last, researchers and practitioners alike could leverage a 
purpose-related classification for the design of novel DTs that address existing purposes better than 
others or create new purposes. Thus, to advance our understanding of the diverse purposes of DT, to 
facilitate further theorizing around DT, and to support practitioners in managing or designing DT, we ask:  

How can DTs be classified through their purposes? 

To address this question, we build a taxonomic theory (Gregor, 2006) for DT that enables its classification 
through its diverse purposes. We follow McKelvey’s (1982) ‘organizational systematics’ paradigm and 
develop two artifacts that make up our taxonomic theory: (1) A taxonomy of DT and (2) purpose-related 
DT archetypes. First, we describe differences and commonalities of individual DTs by developing a multi-
layer taxonomy for individual DTs according to Nickerson, Varshney, and Muntermann’s (2013). Hund et 
al. (2021, p. 5) made the case that purpose “is determined by social actors such as users”. We therefore 
argue that the purpose of DT is something that can be studied best by analyzing DTs close to practice. 
Hence, our taxonomy development approach builds on a sample of 92 real-world DTs compiled from the 
GHC as primary data source. Second, we use the taxonomy to inductively extract nine purpose-related 
archetypes, i.e., foundational and distinguishable types (Ross, 1974; van der Valk et al., 2021), of DT. 
Through a cluster analysis, these purpose-related DT archetypes reflect combinations of DT 
characteristics typically co-occurring in practice. Finally, we evaluated the reliability, validity, and 
usefulness of the taxonomy and purpose-related DT archetypes via the Q-sort method, further expert 
insights (Nahm, Rao, Solis-Galvan, & Ragu-Nathan, 2002) and a longitudinal analysis. Overall, our work 
contributes to the descriptive knowledge on DT. The resultant taxonomic theory (Gregor, 2006) fosters our 
understanding of the purposes of DT and lays the ground for further theorizing. Therewith, we also 
support practitioners to manage and design DTs.  

Our paper is structured as follows: In Section 2, we provide background by elaborating on the nature of 
DT compared to the closely related IT construct and by comparing existing technology classifications. In 
Section 3, we outline our research design, before introducing the taxonomy and the purpose-related DT 
archetypes in Section 4 and 5. Thereafter, we present our evaluation results in Section 6 and discuss 
implications in Section 7. In Section 8, we conclude with a summary and limitations that provide stimuli for 
future research. 

2 Background 

As a starting point for developing a purpose-related classification of DTs, we build on the literature from 
the IS discipline and beyond covering the construct (digital) technology. We start by outlining a brief 
history of technology and, thereby, also elaborate on the differentiation between the coexisting terms IT 
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and DT. We then draw from the rich body of knowledge on DT to illuminate our understanding of DT and 
the chosen perspective for this paper (i.e., purpose-related perspective). Thereafter, we compare existing 
technology classifications in terms of structuring and classifying DT related to their purposes. 

2.1 Technology in the Information Systems Discipline 

There are many definitions of ‘technology’. Most fundamentally, technologies can be defined as a 
“collection of devices and methods available to human society” (Arthur & Polak, 2006, p. 23). To refine 
this fundamental understanding, Arthur (2009) proposed three definitions of technology: (1) as a means to 
fulfil a human purpose, (2) as an assemblage of practices and purposes, and (3) as the collection of 
devices and practices available to a culture. Further, he put forward a theory of combinatorial evolution, 
according to which technology components are miniature technologies themselves, which evolve by 
constructing new functionality and devices based on existing technology (Arthur & Polak, 2006). Today, 
technology is a central subject of interest in many disciplines, including, for example, medicine (e.g., 
Blumenthal, 2011), biotechnology (e.g., Bains, 2003), and IS (e.g., Adomavicius et al., 2008). These 
disciplines, however, think about and discuss technology differently. More precisely, when Kline (1985) 
studied the general construct of technology, he uncovered that the understanding of technology depends 
on its purposes in different contexts. In the IS discipline, technology has always been at the center of 
research. For example, Davis and Olson (1988) described IS as using “computer hardware and software, 
manual procedures, management and decision models, and a database” (p. 5) and Klein and Hirschheim 
(1989, p. 34) stated that “IS and technology can become a force of social progress” (p. 215). 

We find two co-existent terms in the IS literature both of which refer to technology but whose distinction is 
by no means clear: IT and DT. IT is the traditional term which describes technology as a collector, 
storage, processor, and transmitter of information to automate work (Boaden & Lockett, 1991; Orlikowski, 
1992; Silver, Markus, & Beath, 1995; Zuboff, 1989). IT builds on symbol-based computation, i.e., bitstrings 
that “provide a standard form of symbols to encode input, process, and output of […] tasks” (Benbya, Nan, 
Tanriverdi, & Yoo, 2020, p. 2). Along these lines, Davis (2000) described IT as the central component of 
IS, where individuals use IT to “deliver information and communications services for transaction 
processing/operations and administration/management of an organization” (p. 67). IT characteristics cover 
a digital and a physical perspective (i.e., soft- and hardware), with the latter becoming manifest in 
objective forms and functions varying in terms of context and purpose (Orlikowski, 1992). El Sawy (2003) 
proposed three views of IT, which comply with Porter and Heppelmann’s (2014) waves of IT-driven 
transformation. First, IT for the purpose of standardization and automation can be seen as a tool 
separated from individuals and their work. Second, when using IT for the purpose of ubiquitous 
connectivity, the environment of individuals’ work comprises and integrates IT. Third, when IT becomes an 
integral part of products and services, it not only fuses into the core of business but also into individuals’ 
work and personal lives. 

As the third wave of IT-driven transformation became increasingly relevant (Porter & Heppelmann, 2014), 
the scope of IS research broadened and focused on the digital perspective of technology (Baskerville et 
al., 2020; Kallinikos & Mariátegui, 2011; Tarafdar & Tanriverdi, 2018). As a result, the understanding of IT 
evolved from Davis’ (2000) traditional perspective to a more holistic one, which led to the emergence of 
the DT construct. DT is often simply described as an umbrella term for technology in digital contexts 
(Denner, Püschel, & Röglinger, 2018). More specifically, Bharadwaj et al. (2013) and Vial (2019) describe 
DT as a combination of information, computing, communication, and connectivity technologies. As DTs 
are embedded in products and services, they can hardly be disentangled from the underlying IT 
infrastructure anymore (Henfridsson & Bygstad, 2013; Yoo et al., 2010). DT is known to have pervasive 
economic and societal effects (Kreuzer et al., 2022; Tim et al., 2021), e.g., as it disperses agency across 
various actors as well as blurs boundaries between customers and companies as well as products and 
industries (Oberländer et al., 2021; Yoo et al., 2010). In the IS literature, DT has been predominantly 
discussed in terms of its nature (e.g., Faulkner and Runde (2019) and Kallinikos et al. (2013)) related 
phenomena such as digital innovation (e.g., Yoo et al. (2010)) and transformation (e.g., Vial (2019)), and 
individual technologies such as artificial intelligence (e.g., Ägarfalk (2020)) or digital twins (e.g., van der 
Valk et al. (2021)) 

Drawing from this brief historical overview, we find that the DT construct has emerged gradually, making 
the radical developments in the IS context and beyond tangible. The evolving understanding of technology 
indicates that the DT construct differs from the traditional understanding of IT, e.g., as proposed by Davis 
(2000), reaching beyond infrastructure-enabled automation and connectivity. In this regard, owing to DT’s 
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embeddedness in products and services and its immersive role in society, DT is associated with a wider 
variety of purposes compared to traditional IT. Similar conclusions can be drawn from the large number of 
DT-related phenomena. While the core of their respective research streams still matches their non-digital 
counterparts, e.g., digital and (traditional) entrepreneurship (Briel et al., 2021; Kreuzer et al., 2022), the 
emergence of DT challenged all existing theoretical assumptions, which have been mostly developed 
when IT was the primary construct in focus. Nevertheless, today, IT and DT still coexist as related 
constructs, whereby, for example, neither seminal work such as Baskerville et al. (2020), Wessel, Baiyere, 
Ologeanu-Taddei, Cha, and Blegind Jensen (2021) nor Yoo et al. (2010) proposed a clear distinction 
between them.  

2.2 The Nature of Technology in Digital Contexts 

To understand in more detail how IS research conceptualized the nature of DT, we present existing 
conceptualizations of DT and elaborate on the closely related constructs digital objects and digital 
artifacts. Thereafter, we characterize our general understanding of DT in a synopsis that builds on the 
current state-of-the-art knowledge in the academic literature. 

2.2.1 Layered Architecture of Digital Technology 

The IS literature follows the idea that DT’s embedding in products, services, and individuals’ lives is a 
constitutive property. Thereby, DT has been discussed in terms of architectures (Adomavicius et al., 2008; 
Gao & Iyer, 2006; Yoo et al., 2010). For example, the Internet architecture includes a content, application, 
logical, and physical layer (Farrell & Weiser, 2003). In technology ecosystems, i.e., habitats where 
multiple technologies influence one another, technologies are conceptually split into components, 
products, or infrastructure (Adomavicius et al., 2008). Investigations on the networked information 
economy suggest a three-layered understanding of DT with a physical, a logical, and a content layer 
(Benkler, 2006). 

Building on and extending these works, Yoo et al. (2010) proposed the layered modular architecture of 
DT, which comprises a content, service, network, and device layer. Moreover, Yoo et al. (2010) were the 
first to define re-programmability, homogenization of data, and self-referential nature as constitutive 
properties of DTs: Homogenization of data allows for processing digital content, a property that takes a 
technical perspective where technology converts analog signals into binary numbers in line with symbol-
based computing (Rabiner & Gold, 1975). Re-programmability enables the separation of a device’s 
functional logic from its physical embodiment. This leads to the third property, the self-referential nature of 
DT, which yields positive network externalities (Yoo et al., 2010). As a result of these three properties, a 
DT embedded in an artifact, e.g., as an outcome of digital innovation, enables convergence, i.e., it can be 
easily combined with other artifacts, and generativity, i.e., it can be indefinitely extended (Ciriello et al., 
2018; Kreuzer et al., 2022; Yoo, Boland, Lyytinen, & Majchrzak, 2012). Yoo et al.’s (2010) 
conceptualization of DT, i.e., the just introduced three properties enabling convergence and generativity, 
served as input for many subsequent studies theorizing the nature of DT. 

2.2.2 Digital Objects and Digital Artifacts 

IS research has built mature knowledge on the constructs digital object and digital artifact, which are both 
closely related to DT and, thus, not easy to differentiate. Faulkner and Runde (2013, 2019) described 
digital objects as a combination of material and non-material objects, usually hybrids, whose components 
include one or more bitstrings. Thus, they are not necessarily completely digital but can also include “[…] 
relatively small-scale physical devices, ranging from computer systems, components, and peripherals […]” 
(Faulkner & Runde, 2019, p. 1285). As hybrids, digital objects also inherit the characteristics of their non-
material components, i.e., non-rivalry in use, infinite expansibility and re-combinability (Faulkner & Runde, 
2011, 2019). Further, digital objects are context-dependent, meaning that a digital object acquires a 
specific (social) positioning, e.g., functions, rights and responsibilities, within the context of the 
sociotechnical system in which it is used (Faulkner & Runde, 2019). However, due to the characteristics of 
a digital object, it can continuously be transfigured, which is why digital objects always signal that they are 
incomplete and perpetually in the making (Garud, Jain, & Tuertscher, 2009). 

To theorize on this phenomenon of constant incompleteness, Kallinikos et al. (2013) deployed the term 
digital artifacts. In this regard, they argued for and discussed an ambivalent ontology of digital artifacts 
perceiving them as objects which “lack the plenitude and stability afforded by traditional items and 
devices” (Kallinikos et al., 2013, pp. 357–358) as they are editable, interactive, reprogrammable, and 
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distributed. Moreover, in line with Faulkner and Runde (2019) argument for the social positioning of digital 
objects, Ciriello et al. (2019) stated that a digital artifact is always practice-oriented, i.e., its purpose is 
defined by the practice it is used for. In an effort to untangle some of the overlaps between constructs 
describing technology in digital contexts, Hund et al. (2021) argued that the presence of a social 
positioning (Faulkner & Runde, 2019), i.e., purpose, differentiates DT from digital objects. They therefore 
stated that a “digital object becomes a digital technology when it is assigned a meaning, namely a 
purpose for applying it, whereby the purpose is determined by social actors such as users” (Hund et al., 
2021, p. 5). 

2.2.3 Synopsis 

Considering these existing conceptualizations of the nature of DT, we make a twofold conclusion for our 
understanding of DT and the perspective we take for analysing it. First, following studies such as Hund et 
al. (2021), Ciriello et al. (2019) and Faulkner and Runde (2019), DT is closely linked to the purpose it 
provides within a social context. This finding also aligns with the way technology in general has always 
shared associations to its context and purposes, e.g., Kline (1985) and Davis (2000). Hence, we take a 
purpose-related perspective on DT. In a broader IS context, our research thereby also aligns with the 
sociomateriality perspective on DT (Orlikowski, 2007, 2010; Orlikowski & Scott, 2015; Scott & Orlikowski, 
2014) which assumes inseparability of the social and material (Orlikowski & Scott, 2008). Sociomateriality 
is based on a relational ontology, whereby, “entities, human beings, and things exist only in relations: they 
are performed and continuously brought into being through relations” (Cecez-Kecmanovic, Galliers, 
Henfridsson, Newell, & Vidgen, 2014, p. 809). We argue that purpose is an essential component 
underlying these relations. 

Second, despite the existence of multiple terms for technology in digital contexts, e.g., DT, digital object 
and digital artifact, there is a clear consensus between studies when conceptualizing the nature of DT: On 
the one hand, most conceptualizations propose and substantiate a set of properties that render a 
technology digital. On the other hand, although these sets of properties differ in their level of detail or used 
terms, they share the idea that DT has a layered modular architecture (Yoo et al., 2010) and enables 
convergence and generativity (Yoo et al., 2012). Hence, we decided to draw from Yoo et al.’s (2010) DT 
properties (i.e., re-programmability, homogenization of data, and self-referential nature) as they were one 
of the first and most fundamental DT conceptualizations, they have been used widely across research 
streams (Kreuzer et al., 2022) and provide a level of detail sufficient for the purpose of our paper. 
Moreover, these properties enable differentiating DT from other technology not closely related to IS, e.g., 
nano- and biotechnology.  

2.3 Technology Classifications in Academia and Practice 

Classifications have a long history in IS research. They support the description, understanding, and 
analysis of novel phenomena by classifying objects based on dimensions, characteristics, or attributes 
(Gregor, 2006; Kundisch et al., 2021; Nickerson et al., 2013). We argue that a purpose-related 
classification of DTs is highly relevant to research and practice, e.g., to better understand and theorize the 
diverse purposes of DT or to design DTs serving new purposes. To emphasize the need for such a 
purpose-related classification and to outline the existing knowledge base, we compare existing technology 
classifications (see Appendix, Table 5 for details) from academia and practice according to four criteria 
that are relevant for classifying DT through its purposes: 1) Rigorously developed, 2) applicable to DT, 3) 
sufficiently concrete to reflect the diverse purposes of DT and 4) sufficiently abstract to be persistent. 

A useful DT classification, first, should be rigorously developed and evaluated following transparent 
research methods and building on theoretical foundation and empirical evidence. Second, a classification 
should be applicable to DT by considering its nature, i.e., the layered modular architecture, and 
technology properties enabling convergence and generativity (Yoo et al., 2010; Yoo et al., 2012). Third, a 
classification should be sufficiently concrete substantiating the diverse purposes of DT to make the 
assignment to a class meaningful. It therefore needs to provide some descriptions and explanations of the 
purposes or examples of how related purposes unfold in practice. Fourth, a classification should be 
sufficiently abstract to be persistent over a reasonably long period of time reaching beyond individual 
technologies and hence providing a holistic overview of DT purposes. We assessed existing (digital) 
technology classifications according to these four criteria and present key insights below. A complete 
overview of the classifications can be found in Appendix A. 
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While our list may be not exhaustive, to the best of our knowledge, there is no technology classification 
that addresses all four criteria yet. First, there are classifications provided by the professional literature, 
which offer tangible yet a-theoretical approaches. For example, describing the ‘next set of [digital] 
technologies’, the DARQ acronym includes distributed ledger, artificial intelligence, extended reality, and 
quantum computing (Accenture, 2019). Consulting and market research agencies also regularly compile 
technology lists and trend reports, reflecting the growing number and variety of DTs. The GHC, for 
instance, assigns emerging technologies to early life cycle phases, i.e., technology trigger, peak of inflated 
expectations, trough of disillusionment, slope of enlightenment, and plateau of productivity. While these 
lists and reports provide a valuable and wide overview of emergent technologies, they neither have been 
developed in a scientifically rigorous manner nor are they persistent. Second, there are technology 
classifications that do not focus on DT or particularly consider digital characteristics of technology. These 
studies were often created for similar but not synonymous constructs. For example, Davis (2000) 
classified IT as infrastructure, repositories, or applications for transaction, processing, operations, 
administration, or management. Third, other classifications are not sufficiently concrete regarding DT 
purposes. These studies often define DT simply as a means to investigate DT-related phenomena, for 
which it is not necessary to fully understand the diverse purposes of DT. For example, the popular SMAC 
acronym classifies technologies into social, mobile, analytics, and cloud (Evans, 2016; Verma, Kumar, & 
Sharma, 2016) and, over time, has been extended by Internet of Things (Sebastian, Moloney, Ross, & 
Fonstadt, 2017; Vashi, Ram, Modi, Verma, & Prakash, 2017) and platforms (Vial, 2019). While these 
classes provide the potential for further exploration of their corresponding purposes, SMAC has been 
primarily used to study the phenomenon of digital transformation. Fourth, there are classifications that 
specifically focus on individual or a sub-set of DTs and are hence not useful to classify all established and 
emergent technologies, i.e., technologies that have been in use for a long (established) or comparatively 
short (emergent) period of time (Laycey, Malakar, McCrea, & Moffat, 2019). For example, Power (2004) 
provided a classification scheme for Decision Support Systems, van der Valk et al. developed a taxonomy 
and archetypes for digital twins, and Yang and Tate (2012) focused on Cloud Computing.  

We conclude that a purpose-related classification of DTs is missing in the IS literature. In our paper, we 
aim to develop a taxonomic theory that addresses all four criteria. We build on a theoretically well-founded 
and empirically validated taxonomy of DT (criterion 1), whereby we draw from Yoo et al. (2010) for our 
understanding of DT to consider digital characteristics of technology (criterion 2). By applying a purpose-
related perspective on DT, we will focus on structuring and substantiating purposes of DT (criterion 3). To 
address criterion 4, we base our work on a diverse sample of DTs that reaches beyond individual or a 
sub-set of DTs. As Hund et al. (2021, p. 5) made the case that purpose “is determined by social actors 
such as users”, we argue that the purpose of DT is something that can be studied best by analyzing DT 
close to practice. Therefore, we consider the GHC a sensible primary source for compiling a sample of 
DTs, enabling us to inductively develop both the taxonomy and purpose-related DT archetypes. Our 
rationale is that the GHC has been updated annually for two decades and features short definitions per 
technology. Against this backdrop, it is often used in the academic literature (e.g., O'Leary (2008), Prat 
(2019) and van der Aalst, Bichler, and Heinzl (2018)). We provide more details on how we compiled our 
sample of DTs in the following. 

3 Research Design 

To address our research question, we aimed to build a taxonomic theory (Gregor, 2006) for DT that 
enables the classification and understanding of its purposes. McKelvey (1982) argued that systematics 
such as classifications are a necessary first step to develop sound scientific methods (Gregor, 2006). To 
systematically identify relevant classes of a phenomenon of interest, i.e., DT in our paper, researchers 
must first conceptualize potential characteristics to determine similarities and differences of real-world 
objects. To do so, McKelvey (1982) suggested to use taxonomies which, today, are a proven and well-
established research outcome in the IS discipline (Gregor, 2006; Kundisch et al., 2021). IS literature 
thereby often uses taxonomies to derive archetypes (Kundisch et al., 2021), i.e., foundational and 
distinguishable types or classes underlying the phenomenon or objects of interest (Ross, 1974; van der 
Valk et al., 2021). 

For the research design of our paper, we decided to follow McKelvey’s (1982) ‘organizational systematics’ 
paradigm as it covers the most essential steps to build a sound classification and to operationalize it 
through ‘state of the art’ classification methods from the IS literature. More precisely, we adopted 
Nickerson et al.’s (2013) taxonomy development approach to develop a multi-layer taxonomy for individual 
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DTs and applied cluster analysis (Strauss & Maltitz, 2017; Ward, 1963) to inductively extract purpose-
related DT archetypes. Below, we first present our strategy for compiling a sample of DTs as the empirical 
basis for our iterative taxonomy development. Thereafter, we describe our taxonomy development 
process before outlining important decisions of the cluster analysis. Finally, we present our evaluation 
approach.  

3.1 Compiling a Sample of Digital Technologies 

To develop and evaluate both the taxonomy and the purpose-related DT archetypes, we compiled a 
sample of DTs. To study DT close to practice (Hund et al., 2021) and account for the fast development of 
DTs, we therefore mainly used technology reports offered by consultancies and market research institutes 
as sources (Table 1). 

Table 1. Technology Reports used for Compiling a Sample of Digital Technologies 

Publisher 
Details on  
publisher 

Title of issue 
DTs  
per Issue 

First  
appearance 

Publication 
frequency 

Technology 
domain 

Accenture 
Management  
consulting 

Technology Vision 5 2015 annual digital / social 

Deloitte 
Auditing and  
consulting 

Deloitte Tech Trends 8 2014 annual digital / social 

Forbes 
Business 
magazine 

Top 10 Trends for Digital  
Transformation 

10 2017 annual digital 

Forrester 
Market research  
institute 

Top Technology Trends To 
Watch 

10 2012 triennial digital 

Future Today  
Institute 

Management  
consulting 

Tech Trends Annual Report 159 - 225 2017 annual mixed * 

Gartner 
Market research  
institute 

Gartner Hype Cycle for 
Emerging Technologies 

19-47 2000 annual digital 

MIT Technology 
Review 

Technology  
magazine 

10 Breakthrough 
Technologies 

10 2001 annual mixed * 

Scientific  
America 

Popular science 
magazine 

Top 10 Emerging 
Technologies 

10 2015 annual mixed * 

World Economic 
Forum 

Economic (non-
profit) foundation 

Top 10 Emerging 
Technologies 

10 2012 annual mixed * 

*Note: Mixed: comprises, inter alia, bio, nano, neuro, and energy technologies 

After comparing the available technology reports, we found that the majority either describes DTs on a 
high level of abstraction or includes technologies from different disciplines such as medicine, biology, 
sociology, or energy. As already justified in the background, the GHC fits our purposes best as it mainly 
focuses on emergent technologies in the digital context. Moreover, the GHC is the only source that 
enables a long-term view on technology development, as it has been published continually for two 
decades. Hence, we used the GHC as our primary source and initially identified 140 technologies from the 
years 2009 to 2017. We chose this timeframe to have both prior and later editions of the GHC left for the 
evaluation. Appendix B lists all 140 technologies included in the GHC from 2009 to 2017. To offset 
potential bias, we drew on the other technology trends from Table 1 for cross-checking purposes.  

To ensure that the DTs included in our sample were comparable regarding their level of abstraction and 
digital in nature, we developed the following assessment criteria. As a prerequisite, we required each DT 
to be different from any other DT to ensure that each could be judged based on its unique definition. 
Where this was not the case, we merged the respective DTs, which shared one definition and did not 
appear within the same GHC edition. We also reduced the sample in accordance with formal and content-
oriented requirements. First, the definition of a DT included in the GHC had to provide sufficient 
information for classification. Second, the DTs had to be on a similar level of abstraction – as far as could 
be subjectively judged. Third, each DT had to comply with Yoo et al.’s (2010) DT properties. 



Communications of the Association for Information Systems 564 

 

  Accepted Manuscript 

 

After analyzing the 140 initially identified DTs against the assessment criteria, we obtained a sample of 92 
DTs for the years 2009 to 2017 (Appendix B). With regards to the validity of our sample, we could map 
three quarters of these DTs to at least one additional technology report from Table 1. Conversely, we did 
not find any DTs in the other technology reports which were not included in the respective GHCs. Hence, 
we are confident that our sample is comprehensive and fits our purpose of developing and validating a 
multi-layer taxonomy and purpose-related DT archetypes. 

3.2 Developing a Taxonomy for Digital Technologies 

Taxonomy development has been successfully applied in various IS contexts (Kundisch et al., 2021; 
Lösser, Oberländer, & Rau, 2019). Taxonomies are classification schemes unfolding characteristics and 
dimensions of a phenomenon. Thus, they can be used to group objects on the basis of similarities and 
differences (Nickerson et al., 2013) and to derive archetypes (e.g., van der Valk et al. (2021)). In line with 
McKelvey (1982), we aimed to develop a taxonomy as a first artifact of our taxonomic theory (Gregor, 
2006). 

We applied Nickerson et al.’s (2013) iterative taxonomy development approach, as it incorporates 
“methodological recommendations for taxonomy development from other disciplines” (Lösser et al., 2019, 
p. 3). In IS research, Nickerson et al. (2013) were the first to provide a systematic, transparent, and 
replicable taxonomy development method (Lösser et al., 2019). Initially, this method demands for the 
determination of a so-called meta-characteristic, representing the main purpose of the taxonomy. 
Subsequently, it requires determining objective and subjective ending conditions. With this, the 
prerequisites are set to choose an approach per iteration, i.e., conceptual-to-empirical or empirical-to 
conceptual. The conceptual-to-empirical approach conceptualizes dimensions and characteristics 
deductively, primarily derived from the literature and complemented by the researchers’ creativity and 
justificatory knowledge. After assigning real-world objects – in our paper: DTs from our sample – to the 
dimensions and characteristics, an initial or revised taxonomy is obtained. The empirical-to-conceptual 
approach first identifies objects, which are then grouped and dimensions as well as characteristics are 
developed inductively. After each iteration, the ending conditions must be checked. The taxonomy 
development process continues until all ending conditions are met.  

Our instantiation of the taxonomy development process comprised five iterations. As the field of DTs is 
fast-moving, we applied both approaches – starting with a conceptual-to-empirical iteration to account for 
extant knowledge followed by four empirical-to-conceptual iterations to account for characteristics of the 
DTs from our sample. We began the taxonomy development process by defining the meta-characteristic. 
In line with our idea of using the taxonomy as a means for classifying individual DTs and for developing 
purpose-related DT archetypes, we chose ‘characteristics of individual DTs’. As recommended by 
Nickerson et al. (2013), we used the following objective ending conditions: (1) each characteristic is 
unique within its dimension, (2) each dimension is unique and not repeated within the taxonomy, (3) at 
least one object must be identified per characteristic and dimension, and (4) an iteration does not imply 
further modification of the taxonomy. We also chose subjective ending conditions, which are met if the 
taxonomy is concise, robust, comprehensive, extendible, and explanatory based on the co-authors’ 
assessment (Nickerson et al., 2013). Table 2 provides an overview of the taxonomy development process, 
including the approach per iteration, the number of classified objects, and the ending conditions. Appendix 
C provides details for every iteration, including methodological design decisions. 

3.3 Developing Purpose-related Digital Technology Archetypes 

Following McKelvey (1982), identifying purpose-related DT archetypes requires understanding which 
combinations of DT characteristics typically co-occur in reality and which purpose they acquire as part of 
the DT’s social positioning (Faulkner & Runde, 2019; Hund et al., 2021). Hence, we classified the 
individual DTs from our sample using the taxonomy, applied cluster analysis to inductively develop DT 
archetypes, identified purpose-related names and further substantiated each archetype.  

Cluster analysis is a statistical technique that groups similar objects (Field, 2013; Hair, Black, Babin, & 
Anderson, 2010), aiming for homogeneity within and heterogeneity among clusters (Cormack, 1971). We 
used Ward’s (1963) agglomerative hierarchical clustering algorithm, as it has been often applied (Ferreira 
& Hitchcock, 2009; Saraçli, Doğan, & Doğan, 2013), achieved good results in comparable studies, 
determines the entire cluster hierarchy, and provides comprehensible cluster solutions (Montani & 
Leonardi, 2014; Weerdt, van den Broucke, Vanthienen, & Baesens, 2013). As opposed to partitioning 
algorithms, which use a predetermined number of clusters, hierarchical algorithms merge or divide 
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clusters to create solutions for all possible numbers of clusters (Vendramin, Campello, & Hruschka, 2010). 
As a distance measure, we chose the Manhattan-metric that has proven useful in combination with the 
Ward algorithm (Strauss & Maltitz, 2017). Details on the encoding are included in Appendix D. 
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Table 2. Details on the Iterative Taxonomy Development Process 
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Major Changes 
 
Ending Conditions 
(selection, not exhaustive) 

1 C2E 

Several 
technologies from 
multiple sources  
(cf. Table 1) 

6 / 10 / 34 

Superset of layers, 
dimensions, and 
characteristics as a 
starting point for 
subsequent 
iterations. 

Subjective and objective ending conditions 
not met: 

- not at least one identified real-life object for 
certain characteristics. 

- not concise due to a large number of 
dimensions and characteristics. 

2 E2C 

46 DTs from the 
GHCs  
of 2015 to 2017 
classified by co-
authors 

6 / 11 / 37 

Addition of one 
dimension and 
associated 
characteristics. 
Modification of 
multiple 
characteristics. 

Subjective ending conditions not met: 
- not concise due to a large number of layers,  

dimensions, and characteristics. 
- not comprehensive as not all real-life 

objects could be classified. 

3 E2C 

10 DTs from the 
GHCs  
of 2015 to 2017 
classified by two  
different focus 
groups 

4 / 8 / 23 

Abandonment of two 
layers and three 
dimensions. 
Condensing of some 
characteristics.  

Subjective ending conditions not met: 
- not explanatory, as focus group members 

could not clearly classify the sample without 
complete information on the respective real-
life object. 

- not concise due to a large number of 
dimensions and characteristics. 

4 E2C 

92 DTs from the 
GHCs  
of 2009 to 2017  
classified by co-
authors 

4 / 8 / 20 

Replacement of one 
dimension and 
associated 
characteristics due 
to significant overlap 
with other 
dimensions.  

Objective ending conditions not met: 
- extension of the sample resulted in adding 

and deleting characteristics, which 
required a modification of the  
taxonomy. 

5 E2C 

92 DTs from the 
GHCs  
of 2009 to 2017  
classified by co-
authors 

4 / 8 / 20 
No further 
modification to the 
taxonomy. 

All objective and subjective ending 
conditions are met: 

- each characteristic is unique within its 
dimension. 

- each dimension is unique and not repeated. 
- at least one object has been identified per  

dimension and characteristic. 
- the iteration does not imply further 

modifications. 
- all co-authors agree that the taxonomy is 

concise, robust, comprehensive, extendible, 
and explanatory. 

*Note: C2E: Conceptual-to-Empirical; E2C: Empirical-to-Conceptual 

Regarding the ideal number of clusters, the literature offers various measures, however, there is no 
agreement as to which is the best (Wu, 2012). To address this ambiguity and leverage the advantages of 
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the different measures, we calculated 16 common clustering validation indices (see Appendix D for 
details), e.g., Ball and Hall (1965), Beale (1969) and Duda and Hart (1973). In accordance with our data 
set and the Ward algorithm, we calculated clustering validation indices for hard (i.e., every object is part of 
exactly one cluster) and internal (i.e., information is only used if it is also needed to conduct the cluster 
analysis) clustering. The recommended number of clusters ranged from 2 to 15, with a tendency towards 
9 clusters represented by one quarter of the indices. Noticing that some indices tended to seek the cluster 
solution at the limits of the range, we narrowed our search by neglecting such indices. We then discussed 
all cluster solutions for the remaining indices, which ranged from 5 (Hartigan, 1975) to 13 (Davies & 
Bouldin, 1979). Thereby, we focused on the interpretability of individual clusters with regards to their 
purposes, while keeping the trade-off between homogeneity per cluster and the manageability of the 
overall solution in mind (Milligan & Cooper, 1985; Sneath & Sokal, 1973). In the end, we chose the cluster 
solution covering nine DT archetypes referring to nine clearly distinguishable and comprehensible 
purposes. 

At last, in line with our purpose-related perspective, we aimed to identify purpose-related names and 
substantiate the purposes for all archetypes. Purpose-related naming means that the name of each DT 
archetype can be read as “DTs for [specific purpose]”. To identify an initial set of names, we decided to 
build on the knowledge we acquired in the author team throughout the entire research process. We 
examined the most frequent taxonomy characteristics per cluster in detail and reflected on the resulting 
purposes of the individual DTs within the cluster. All authors then suggested names independently, which 
we consolidated and discussed iteratively in several author workshops. Once we had agreed on an initial 
set of names, we drew from justificatory knowledge in the IS literature to validate the names and 
substantiate each archetype. Most importantly, for each archetype, we identified key characteristics, 
outlined illustrative examples of assigned DTs (Kundisch et al., 2021), and highlighted connected IS 
research areas. Moreover, during the evaluation (see Section 3.4), we continuously challenged and 
refined the archetypes’ names and substantiations based on a Q-sort within the author team as well as 
with practitioners. 

3.4 Evaluation 

To evaluate our taxonomic theory regarding the criteria reliability, validity, and usefulness, we followed, on 
the one hand, established taxonomy evaluation practices in general as outlined by Szopinski, 
Schoormann, and Kundisch (2019) and Kundisch et al. (2021) as well as specific evaluation strategies of 
articles that have been published in well regarded IS journals or conferences (e.g., Senior Scholars’ 
Basket of Journals), such as Püschel, Röglinger, and Schlott (2016), Oberländer, Kees, Röglinger, and 
Rosemann (2018), and Oberländer et al. (2021). More specifically, we (1) assessed the taxonomy’s 
reliability through independently classifying DTs according to dimensions and characteristics, (2) applied 
the Q-sort method to assess the DT archetypes (Table 3), both internally and externally, (3) asked for 
qualitative expert assessment, and (4) conducted a longitudinal analysis of GHC DTs from 2000 to 2020.  

First, having completed the taxonomy development process, we determined the taxonomy’s reliability via 
dimension- and object-specific hit ratios and prepared additional descriptive statistics to validate its 
applicability. Hit ratios measure co-authors’ agreement regarding the classification of our sample (Nahm et 
al., 2002), whereby the assigned values range from 1 for complete agreement to 0 for complete 
disagreement. To ensure comparability among exclusive dimensions (i.e., characteristics are mutually 
exclusive) and non-exclusive dimensions (i.e., characteristics are not mutually exclusive), we determined 
absolute and relative hit ratios. Absolute ratios capture the relation between the number of observations 
per characteristic and the total number of objects. For non-exclusive dimensions, we further calculated the 
relative ratio, which relates the number of observations per characteristic and the total number of 
observations per dimension. 

Second, used to test taxonomies and related clusters (Carter, Kaufmann, & Michel, 2007; Püschel, 
Roglinger, & Brandt, 2020; Rajesh, Pugazhendhi, & Ganesh, 2011), the Q-sort method is a statistical tool 
that examines peoples’ attitudes and opinions (Stephenson, 1935). Two or more judges (P-set) with a 
clear understanding of the topic (Carter et al., 2007) classify a set of objects (Q-set) to predefined 
constructs to evaluate the degree of their joint understanding. For the internal Q-sort, two co-authors who 
were not yet familiar with the cluster results mapped the DTs to the inferred archetypes. We measured 
reliability using Cohen’s Kappa (Cohen, 1960), defined as the proportion of joint judgment in which there 
is agreement after chance agreement is excluded (Nahm et al., 2002). Considering the frequency of 
correctly assigned objects, validity is measured through object-specific and overall hit ratios (Moore & 
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Benbasat, 1991). For the external Q-sort, we consulted twelve experts from industry via an online 
questionnaire. After a brief introduction of the DT archetypes, the experts classified 18 selected DTs, 
whereby this sample included two DTs per archetypes. All experts were technology savvy and either held 
a strategic position within their organization (e.g., CFO), were directly involved in digitalization (e.g., Head 
of IT), or both (e.g., CIO). Here, we used the Fleiss’ Kappa (Fleiss, 1971), as we had more than two 
judges.  

Table 3. Evaluation Criteria for the Internal and External Q-Sort 

 Internal Q-Sort External Q-Sort 

Judges (P-set) Two co-authors, not familiar with the DTs 
Twelve experts from industry, holding a 
strategic position or being involved with IT 
topics 

Sample (Q-set) 92 DTs from the GHCs of 2009 to 2017 18 DTs from the GHCs of 2009 to 2017 

Construct validity 
measure 

Hit ratio(s) (Moore & Benbasat, 1991) Hit ratio(s) (Moore & Benbasat, 1991) 

Reliability measure Cohen’s Kappa Coefficient (Cohen, 1960) Fleiss’ Kappa Coefficient (Fleiss, 1971) 

 

Third, we asked the experts to assess the perceived usefulness of the taxonomy and archetypes through 
the same online questionnaire that we used for the external Q-sort. We thereby invited them not only to 
share their general thoughts with us but also to outline concrete use cases in which they could see 
applicability of the archetypes.  

Fourth, in line with the organizational systematics paradigm (McKelvey, 1982; Ross, 1974), we 
complemented the Q-sort by challenging the archetypes’ robustness over time by examining their year-
wise occurrence in the GHC, i.e., a longitudinal analysis. 

In Section 4 and Section 5 we present the final versions of the taxonomy and archetypes, i.e., after all 
changes resulting from the evaluation have been incorporated. In Section 6, we elaborate on the key 
results of the evaluation by discussing the evaluation criteria, outlining findings from the Q-Sort and by 
presenting interesting insights from the longitudinal analysis. 

4 Taxonomy of Digital Technologies 

4.1 Overview 

We now present the taxonomy of DTs including layers, dimensions, and characteristics (Figure 1), 
accompanied by examples. The taxonomy takes the perspective of individual DTs. To enhance the 
structure of our taxonomy, we identified layers for grouping dimensions. During the taxonomy 
development, it become apparent that the identified dimensions fit Yoo et al.’s (2010) layered DT 
architecture. Hence, we grouped the dimensions according to the layers device, network, content, and 
service.  

Starting from a technical perspective, the device layer accounts for devices that allow DTs to perform their 
functions. Broadening the focus on physical devices (Benkler, 2006) through the inclusion of logical 
capabilities, Yoo et al. (2010) divide this layer into physical machinery and logical capabilities. Our 
taxonomy accounts for this distinction by including the role of technology and its scope regarding the 
physical and the digital world as dimensions. To describe the socio-technical interactions of DTs, we 
included the network layer. Yoo et al. (2010) characterize networks as structures of physical transport and 
logical transmission. For our purposes, the taxonomy includes the direction of information flow and the 
number of entities involved as dimensions. The content layer refers to the key resource of DTs, i.e., 
received and provided data, and it specifies how data is processed. Finally, the service layer addresses 
the usage of DTs by referring to their functionality (Arthur, 2009) and thereby differentiates between the 
extents of human involvement. Below, we provide details on all dimensions and characteristics. 
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Layer Dimension Characteristic Exclusivity1 

Device 

Role of 
Technology 

Application Infrastructure ME 

Scope Cyber Cyber-Physical ME 

Network 
Multiplicity One-to-One One-to-Many Many-to-Many ME 

Direction Uni-directional Bi-directional ME 

Content 

Data Treatment Collection Aggregation Analysis Execution Transmission NE 

Input Digital Physical NE 

Output Digital Physical NE 

Service 
Human 
Involvement 

Active Usage Passive Usage ME 

Figure 1. Multi-layer Taxonomy of Digital Technology 

4.2 Device Layer 

The role of technology addresses a DT’s function either stand-alone or in enabling the application of other 
DTs. According to Adomavicius, Bockstedt, Gupta, and Kauffman (2004), the role of a technology is 
essential for understanding its functionality. Every DT is bound to devices, which may represent its core or 
the underlying hardware as well as software not necessarily tied to a specific predefined infrastructure. In 
our context, ‘application’ technologies (e.g., Machine Learning or Smart Advisory) provide sets of 
functions that directly address and satisfy user needs. ‘Infrastructure’ technologies (e.g., Neuromorphic 
Hardware or Hybrid Cloud Computing), by contrast, build the foundations for applications and add value 
by supporting, enabling, and enhancing functionality. Unlike Adomavicius et al. (2004), we do not include 
a ‘component’ characteristic as it did not comply with our subjective ending conditions. According to 
Arthur’s (2009) idea of combinatorial evolution, ‘components’ (i.e., technological subunits) are aggregated 
into higher-level technologies. As stand-alone technologies may become components or exist in both 
forms, the definition of a ‘component’ leaves room for interpretation and depends on the point in time at 
which the taxonomy classification took place.  

The scope dimension addresses a DT’s range of actions in line with major contributions on cyber-physical 
systems (Kagermann, Wahlster, & Helbig, 2013; Zamfirescu, Pirvu, Gorecky, & Chakravarthy, 2014). Our 
taxonomy distinguishes between a ‘cyber’ and ‘cyber-physical’ characteristic. The ‘cyber’ scope refers to 
DTs only located within the digital world. This applies to platforms, networks, or analytical technologies 
without human machine interfaces (HMI) as well as to DTs such as Quantum Computing (Horvath & 
Gerritsen, 2012). A ‘cyber-physical’ focus is characterized by a DT’s additional connection with and 
influence on the physical environment. Virtual Reality, for instance, changes the way a human perceives 
its physical environment.  

4.3 Network Layer 

The multiplicity dimension addresses a DT’s socio-technical interaction capabilities. Also referred to as 
transmission or connectivity (Borgia, 2014), a network captures information exchange among the entities 
involved (Bucherer & Uckelmann, 2011). Referring to a network as an arrangement of nodes and edges, 
multiplicity provides information about the number and order of nodes involved. Broadening the entity 
definitions for human-computer interaction developed by Porter and Heppelmann (2014), we distinguish 
three human-technology or technology-technology interaction types. In ‘one-to-one’ interactions, the 
number of participants is limited to two, although an entity is not necessarily an individual, but may be a 
group of similar entities. This applies to many DTs with interfaces to the physical world, such as 
Augmented and Virtual Reality. ‘One-to-many’ interactions implement the idea of hubs, building a central 
system connecting several entities simultaneously (e.g., Hybrid Cloud Computing). Most complex is the 
‘many-to-many’ interaction form, where the underlying technology connects all participating entities. 
Notable examples are wireless networks like 802.11ax or next-generation cellular standards such as 5G, 
which support devices’ fast transmission rates. 

 
1 ME = Mutually exclusive; NE = Non-exclusive 
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The direction dimension covers how DTs exchange data. Again, referring to a network as an arrangement 
of nodes and edges, the direction characterizes the edges between the nodes involved. Similar to a one-
way-street, ‘uni-directional’ communication limits the exchange of data to one direction. Examples include 
sensor technologies, which solely generate and forward data (e.g., Smart Dust), but also DTs that receive 
and process data without sending data in return (e.g., 3D Printers). In contrast, ‘bi-directional’ flows allow 
data to be exchanged in more than one way as the sequence and direction of the data flow is not 
predetermined. This applies, for example, to DTs with HMIs, which freely communicate and interact with 
its users (e.g., Natural Language Question Answering).  

4.4 Content Layer 

The data treatment dimension addresses how DTs process data. Püschel et al. (2020) differentiate 
between transactional or analytical usage, whereas Miller and Mork (2013) introduce three modes of data 
interaction, i.e., (1) data discovery, subsuming the activities of collecting, inventorying, and preparing data, 
(2) data integration, referring to the activity of combining disparate data, and (3) data exploitation, referring 
to analytics which allow for the generation of insights. From an IoT perspective, Borgia (2014) proposed 
similar categories by differentiating three consecutive phases of collection, transmission and process, and 
management and utilization. On this foundation, our taxonomy includes five types of data treatment: Data 
‘collection’ refers to the generation of data and includes the accumulation of data from different sources 
(e.g., Smart Dust). Data ‘aggregation’ stores, manages, aggregates, and/or integrates formerly 
unstructured data (e.g., Enterprise Taxonomy and Ontology Management). Data ‘analysis’ provides 
techniques to assemble, exploit, and interpret data (e.g., Smart Advisors). Data ‘execution’ refers to 
transactional usage, characterizing DTs that are triggered on the basis of instructions and thus execute 
commands (e.g., 3D Printing). Lastly, Data ‘transmission’ focuses on the exchange of data among entities 
involved (e.g., Wi Fi networks like 802.11ax). As most emerging DTs handle data in more than one 
specific way, the characteristics of this dimension are non-exclusive.  

The input and output dimensions address how DTs receive and provide data. As every interaction or 
operation involves the exchange of data, we consider DTs to have data input and output, whereas the 
respective type of data can assume different states. Depending on the DT at hand, this characteristic is 
either ‘digital’ (also including non-digital forms of computing such as Quantum Computing) or ‘physical’ 
(signals perceptible with sensory organs, e.g., visual, acoustic, or haptic). Virtual Reality, for example, 
transforms digital input into a physically perceptible 3D environment, surrounding its user. Smart Dust, by 
contrast, scans the physical environment and generates digital data for further purposes. As combinations 
of characteristics could be observed in our sample, both dimensions are non-exclusive. 

4.5 Service Layer 

Finally, the human involvement dimension addresses how a DT is used by humans. We decided to add 
this dimension after feedback from focus group meetings to emphasize the role of humans and to account 
for the trend towards HMI-supported DTs. Thereby, we follow Arthur (2009) who discussed technology 
usage by and its purpose for humans. ‘Active usage’ means that humans directly use DTs (e.g., 
Wearables). ‘Passive usage’, by contrast, means that humans are not in direct contact with a DT. For 
example, this is the case for network structures or hardware, such as 802.11ax and Neuromorphic 
Hardware.  

5 Purpose-related Digital Technology Archetypes 

The cluster analysis, which we performed on our sample classified according to the taxonomy, resulted in 
nine purpose-related DT archetypes. Each archetype reflects a combination of DT characteristics typically 
co-occurring in reality (Figure 2). Appendix E provides classification details for each DT. Importantly, the 
DT archetypes were developed inductively based on data from nine subsequent years. Providing an 
additional overarching structure that supports intuitive classification, we found that the DT archetypes can 
be further categorized into infrastructure technologies and application technologies. Application 
technologies can be further divided into bridging, intelligence, and interaction technologies. Below, we 
provide details per DT archetype including their purpose, key characteristics, and examples. As for the 
examples, the presented descriptions are taken almost literally from the GHC. For each archetype, we 
included at least two examples to illustrate that each covers a certain range of DTs and elaborate on how 
the DT archetypes connect to the literature. To that end, we draw from selected IS publications. At last, 
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we provide an overview of the unique combinations of characteristics for each archetype to increase 
transparency regarding the assignment process of DTs to archetypes. 

Infrastructure technologies enable efficient data and information sharing among various parties involved. 
Thereby, they provide the (cyber-) physical foundation that application technologies need to build on. 
Infrastructure technologies include connectivity & computation, platform provision, and personal mobile 
communication technologies. 

Connectivity & computation includes DTs with the purpose of efficient data processing or exchange, which 
are mainly characterized as ‘infrastructure’ and by ‘passive usage’. Geared towards data ‘transmission’, 
this DT archetype processes ‘digital’ input and output in ‘many-to-many’ interactions and ‘bi-directional’ 
data flows. Invisible for users, related DTs act in the ‘cyber’ world. As an example, 802.11ax not only 
raises the data throughput of single Wi-Fi devices, but also supports a larger number of simultaneously 
connected devices (Gartner Inc., 2016). Another example is Quantum Computing, a technology based on 
the quantum state of subatomic particles representing information denoted in single elements known as 
quantum bits (Gartner Inc., 2016). As illustrated in the background, this DT archetype is closely related to 
the traditional understanding of IT as part of the infrastructure. According to Silver et al. (1995), the basic 
part of IT infrastructure includes computer and communication network components, operating systems, 
and utilities enabling the usage of independent or shared applications. In the recent IS literature, 
connectivity and computation are discussed in a broader context, e.g., as the foundation for system 
interaction through which distributed work is coordinated and executed (Alter, 2018) or in terms of digitally 
connected enterprises where connectivity facilitates collaboration and information sharing (Levermore, 
Babin, & Hsu, 2010). Finally, this DT archetype resembles Bharadwaj et al.’s (2013) idea of computing 
and connectivity technologies. 

Platform provision comprises DTs that serve the purpose of providing unified access to data or digital 
services. ‘Actively used’, platforms are characterized as ‘infrastructure’ as well as by the ‘transmission’ of 
‘digital’ input and output. As hubs, platforms differ from other network structures in terms of their ‘one-to-
many’ multiplicity, connecting entities in a ‘bi-directional’ manner. Just like the connectivity & computation 
archetype, platforms only act in the ‘cyber’ world. For example, (Mobile) Application Stores are cloud-
based or deployed on premise, providing users with the ability to search for and download applications via 
a central storefront client (Gartner Inc., 2012). Underlining the infrastructural character, the example of 
general Cloud/Web Platforms describes the provision of access to different web functionalities, including 
capabilities enabled not only by technology, but also by community and business aspects (Gartner Inc., 
2011). IT platforms are broadly defined as a general-purpose technology, enabling various applications 
and opportunities (Fichman, 2004). Apart from computing platforms, which are one of the key constituents 
of IT infrastructure (Benitez, Ray, & Henseler, 2018), the IS literature describes infrastructure platforms, 
software development platforms, and application platforms (Fichman, 2004). Finally, this DT archetype 
addresses the ideas of data availability and distribution (Bharadwaj et al., 2013; Loebbecke, 2006) and the 
‘cloud’ component of SMAC (Dewan & Jena, 2014; Evans, 2016). 

Personal mobile communication covers DTs that serve the purpose of enabling personal, location-
independent access to and use of digital data through portable hardware components. This DT archetype 
is mainly characterized by its role of a tangible ‘infrastructure’ and ‘active usage’. It includes individual 
mobile devices, which also allow for data ‘collection’ and ‘transmission’ with ‘physical’ input and output, 
enabling ‘one-to-one’ and ‘bi-directional’ interactions with users. Differing from connectivity & computation 
and platform provision, this DT archetype has a ‘cyber-physical’ scope. As an example, E-Book Readers 
enable purchasing and consuming digital media such as books or newspapers. Before users can exploit 
their full functionality, mobile devices must be connected to a platform/marketplace. As this access is 
either offered via wireless connection or by linkage to a PC, E-Book Readers serve as intermediary 
between users and platforms/marketplaces (Gartner Inc., 2011). A similar example are Media Tablets, 
devices based on a touchscreen display that facilitates content entry via an on-screen keyboard (Gartner 
Inc., 2012). Overall, this DT archetype is reminiscent of the so-called mediated-action perspective, 
describing technology as a mediational means (Kaptelinin & Nardi, 2012). It also resembles the ‘mobile’ 
component of the SMAC classification (Dewan & Jena, 2014; Evans, 2016) and is closely related to 
Fitzgerald, Kruschwitz, Bonnet, and Welch’s (2014) idea of mobile and embedded devices. 

In contrast to infrastructure technologies, application technologies directly engage with end-users to be 
applied in various contexts for various purposes. Specifically, we found three overarching types of 
application technologies with the aims of bridging the virtual and the digital world, providing intelligence 
through analytical or cognitive features, and facilitating novel forms of interaction. To start with, bridging 
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technologies, i.e., sensor-based data collection and actor-based data execution, transform digital input 
into physical output, or vice versa, thereby bridging the gap between the virtual and the physical world. 

Sensor-based data collection encompasses DTs that serve the purpose of collecting real-world data and 
their transformation into digital data. Related DTs are ‘actively used’ for ‘collecting’ data and further 
characterized by ‘physical’ input and ‘digital’ output in ‘one-to-one’ and ‘uni-directional’ interactions. Taking 
the role of an ‘application’, this DT archetype has a ‘cyber-physical’ focus. As an example, Gesture 
Recognition uses sensors or cameras to track the motion of users. Advanced approaches (e.g., gaming 
controllers) even distinguish different types of hand movements such as squeezing, swiping, or pinching 
(Gartner Inc., 2011). Smart Dust, in turn, refers to dust particles as tiny wireless systems that can detect 
light, temperature, pressure, or vibration. They run on a wireless computer network and are distributed 
over an area to perform (sensing) tasks (Gartner Inc., 2017). While sensors have existed for more than a 
century, modern sensors with integrated information and communication technology capabilities (i.e., 
smart sensors) made remarkable progress in storage, energy management, or connectivity, playing a key 
role in industrial and private applications (McGrath & Scanaill, 2014). In the context of cyber-physical 
systems (Kagermann et al., 2013), sensors observe changes in the physical environment and transform 
data into signals for further processing (Akyildiz & Kasimoglu, 2004), enabling highly adaptive and self-
organizing systems (Broy, Cengarle, & Geisberger, 2012; Yoon, Shin, & Suh, 2012). Another important 
research area is the field of wireless sensor networks (e.g., in terms of IoT), where the application of 
sensors includes, for example, environmental, industrial, and traffic monitoring (Xu, He, & Li, 2014). 

Actor-based data execution covers DTs that serve the purpose of transforming digital data into physical 
actions or artifacts. As the counterpart of sensor-based data collection, this DT archetype is characterized 
by ‘active usage’ but stands out from all other archetype in terms of data ‘execution’. Accordingly, related 
DTs transform ‘digital’ input to ‘physical’ output in ‘one-to-one’ and ‘uni-directional’ interactions. Taking the 
role of an ‘application’, this DT archetype has ‘cyber-physical’ focus. An example is 3D Printing, which 
creates three-dimensional objects by converting digital models into physical shapes using different 
materials and solidifying processes (Gartner Inc., 2012). Moreover, the next generation of 4D Printing 
describes a technique where the materials are additionally encoded with a dynamic capability – either 
function, confirmation, or properties – that can change via the application of chemicals, electronics, 
particulates, or nanomaterials (Gartner Inc., 2017). Accordingly, Kagermann et al. (2013) describes actors 
as a another fundamental component of cyber-physical systems, where they translate control signals into 
physical actuation (Akanmu, Anumba, & Messner, 2012; Nof, 2009). 

Intelligence technologies, i.e., analytical insight generation and self-dependent material agency, provide 
advanced analytical or cognitive features. 

Analytical insight generation covers DTs that serve the purpose of analyzing digital data to support 
knowledge creation and decision-making. Accordingly, this DT archetype is characterized by ‘active 
usage’ and data ‘analysis’, which processes ‘digital’ input and output in ‘bi-directional’ ‘one-to-one’ 
interactions. Related DTs serve as ‘applications’ exclusively acting with a ‘cyber’ scope. As an example, 
In-memory Analytics enable fast query and calculation tasks against large volumes of data by loading 
detailed data into memory (Gartner Inc., 2014). Another example is Machine Learning, a technology that 
aims to extract certain kinds of knowledge, i.e., patterns, from a series of observations (Gartner Inc., 
2017). This DT archetype is well-aligned with recent IS literature investigating the potential of big data 
analytics (Sharma, Mithas, & Kankanhalli, 2014). Spurred by increasing data availability, advanced 
algorithms, and computing power (Seddon, Constantinidis, Tamm, & Dod, 2017), big data analytics is 
described by scholars in different contexts. Among others, this includes the process of extracting useful 
knowledge in the context of data mining (Witten, Frank, Hall, & Pal, 2017), data warehousing (Watson, 
Goodhue, & Wixom, 2002), data-driven business processes, or decision making (Lycett, 2013). Finally, 
this DT archetype resembles the ‘analytics’ component of SMAC (Evans, 2016), the ‘artificial intelligence’ 
component of DARQ (Accenture, 2019), as well as Fitzgerald et al.’s (2014) distinction of ‘analytics’ 
against social media, mobile technologies, and embedded devices. 

Self-dependent material agency covers DTs that serve the purpose of collecting and analyzing both digital 
and physical data to enable self-dependent action in the physical world. Just like analytical insight 
generation, this DT archetype is characterized by ‘active usage’ and data ‘analysis’, which is extended by 
further developed data treatment capabilities of ‘collection’, ‘analysis’, ‘execution’ and ‘transmission’. This 
DT archetype processes ‘digital’ and ‘physical’ input and output within ‘bi-directional’ ‘one-to-many’ 
interactions. Taking the role of an ‘application’, this DT archetype acts with a ‘cyber-physical’ focus. As an 
example, Autonomous Vehicles are capable of making decisions moving to a predetermined destination 
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without human intervention. To do so, they use positioning and sensing technologies such as radar or 
cameras to perceive their environment (Gartner Inc., 2017). This DT archetype relates to recent academic 
discussions on smart things and the IoT, which are expected to become autonomous actors in digital 
value networks (Oberländer et al., 2018). Smartness relies on data availability, combination, and 
advanced analysis for diagnostic, predictive, and prescriptive purposes (Porter & Heppelmann, 2014; 
Want, Schilit, & Jenson, 2015). Advanced data analysis also serves as foundation for self-x capabilities 
(e.g., self-configuration, -optimization, -diagnosis, or -healing), which in turn enable autonomous 
operations and the material agency of DTs (Beverungen, Müller, Matzner, Mendling, & vom Brocke, 
2019). 

Finally, interaction technologies, i.e., augmented interaction and natural interaction, facilitate novel forms 
of communication and interaction with humans. 

Augmented interaction relates to DTs that serve the purpose of analyzing digital data and presenting them 
in a physical form to support humans in their tasks. Accordingly, this DT archetype is characterized by 
‘active usage’ and data ‘transmission’, which processes ‘digital’ input to ‘physical’ output within ‘one-to-
one’ ‘bi-directional’ interactions. Related DTs serve as ‘applications’ and act with a ‘cyber-physical’ scope. 
As an example, Augmented Data Discovery enables users to automatically find, visualize, and narrate 
relevant findings, such as correlations, exceptions, clusters, and predictions, without having to build 
models or algorithms. Users explore data via visualizations, supported by natural-language generated 
narration and interpretation of results (Gartner Inc., 2017). Virtual Personal Assistants, in turn, support 
users by predicting their needs via the observation and analysis of behavior. When required, these DTs 
act autonomously on the users’ behalf, e.g., prioritizing e-mails by content and urgency, and performing 
associated tasks (Gartner Inc., 2016). This DT archetype refers to the extended or mixed ‘reality’ 
technology listed within the DARQ acronym. It describes virtual and augmented reality technologies which 
transform interactions in the professional and private environment by assisting humans through 
information provision and decision support (Accenture, 2019). With this, digital artifacts take roles beyond 
enhancing productivity, for example, as communication mediators (Te'eni, 2001) or decision-making 
partners (Komiak & Benbasat, 2006). This reflects the idea of digital artifacts as applications that support 
tasks embedded in a certain structure and context (Benbasat & Zmud, 2003). 

Natural interaction covers DTs that serve the purpose of enabling HMIs to be perceived as natural by 
humans. Again, this DT archetype is characterized by ‘active usage’, but primarily involves interaction 
capabilities without deeper analytics, as it mainly focuses on data ‘collection’ and ‘transmission’. Unlike 
augmented interaction, DTs within this archetype allow for ‘physical’ input, enabling them to act like 
humans in terms of seeing, hearing, speaking, or touching. Producing ‘digital (and physical)’ output in ‘bi-
directional’ ‘one-to-one’ interactions, this DT archetype also serves as ‘application’ and acts with a 
‘cyber-physical’ scope. As an example, Conversational User Interfaces are a high-level design models in 
which user and machine interactions primarily occur in the user’s spoken or written natural language. 
These interactions range from simple utterances to highly complex interactions and results (Gartner Inc., 
2017). A similar example is Natural-language Question Answering, a type of natural-language processing 
technology providing users with a means of asking a question in plain language. A computer or service 
can answer it meaningfully, while maintaining the flow of interaction (Gartner Inc., 2016). This DT 
archetype relates to the social actor view (Al-Natour & Benbasat, 2009). From the perspective of 
anthropomorphic IS, DTs are seen as social actors, which possess “human-like physical or non-physical 
characteristics, behaviors, emotions, traits and attributes” (Pfeuffer, Benlian, Gimpel, & Hinz, 2019). As a 
result, users perceive interactions with DT as interpersonal and react as if they were interacting in social 
situations (Al-Natour & Benbasat, 2009; Kelley et al., 2003). 

To shed light on the assignment process of DTs to purpose-related archetypes, we provide an overview of 
the unique combinations of characteristics for each archetype, shown in Table 4. For each archetype, we 
provide a statement that uses the logical operators ‘AND’ and ‘OR’ (Boell & Cecez-Kecmanovic, 2014) to 
combine a set of characteristics from our taxonomy. The results show that assigning DTs to archetypes 
does not necessarily require specifying all characteristics. 
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Table 4. Unique Combination of Characteristics for each Archetype 

Purpose-related DT 
archetype 

Unique combination of characteristics 

Connectivity & 
Computation 

Role of Technology = ‚Infrastructure‘ AND { 
Multiplicity = ‚Many-To-Many‘ OR Human Involvement = „Passive Usage“ } 

Platform Provision 

Role of Technology = ‚Infrastructure‘ AND { 
Multiplicity = ‚One-To-Many‘ OR { 
Scope = ‚Cyber‘ AND Human Involvement = ‚Active Usage‘ }} 

Personal Mobile 
Communication 

Role of Technology = ‚Infrastructure‘ AND { 
Multiplicity = ‚One-To-One‘ OR Data Treatment = ‚Collection/Transmission‘ OR Input = 
„Digital/Physical‘ OR Output = Physical } 

Sensor-based Data 
Collection 

Role of Technology = ‚Application‘ AND { 
Direction = ‚Uni-Directional‘ AND { 

Data Treatment = ‚Collection‘ OR Input = ‚Physical‘ OR Output = ‚Digital‘ }} 

Actor-based Data 
Execution 

Role of Technology = ‚Application‘ AND { 
Data Treatment = ‚Execution‘ OR { 
Direction = ‚Uni-Directional‘ AND { 

Input = ‚Digital‘ OR Output = ‚Physical‘ }}} 

Analytical Insight 
Generation 

Role of Technology = ‚Application‘ AND { 
Scope = ‚Cyber OR Data treatment = ‚Analysis‘ } 

Self-dependent Material 
Agency 

Role of Technology = ‚Application‘ AND { 
Multiplicity = ‚One-To-Many ‘OR Input = ‚Digital/Physical‘ OR Output = 
‚Digital/Physical‘ OR Data Treatment = ‘Collection/Analysis/Execution/Transmission‘} 

Augmented Interaction 

Role of Technology = ‚Application‘ AND { 
Data Treatment = ‚Transmission‘ OR { 
Direction = ‚Bi-Directional‘ AND Output = ‚Physical‘ }} 

Natural Interaction 

Role of Technology = ‚Application‘ AND { 
Direction = ‚Bi-Directional AND { 

Data Treatment = ‚Collection‘ OR Input = ‚Physical‘ OR Output = ‚Digital‘ }} 

6 Evaluation and Application 

To evaluate the taxonomy, we first assessed its reliability by classifying the DTs from our sample and by 
calculating hit ratios (Appendix F). To that end, two co-authors independently classified the DTs. They 
achieved dimension-specific hit ratios of more than 84%. Moreover, 80% of the object-specific hit ratios 
exceeded 75%. These results support the taxonomy’s ability to classify individual DTs.  

Second, to evaluate the purpose-related DT archetypes, we assessed their reliability and validity through 
the Q-sort method. As for the internal Q-sort, we achieved an overall hit ratio of 88% (Moore & Benbasat, 
1991) and a Cohen’s Kappa of 84% (Cohen, 1960), reflecting ‘almost perfect’ agreement (Landis & Koch, 
1977). Indicating the extent to which the DTs from our sample were correctly classified, the archetype-
specific hit ratios amounted to at least 71%. As for the external Q-sort, the industry experts received an 
overall hit ratio of 75% (Moore & Benbasat, 1991) and a Fleiss’ Kappa of 61% (Fleiss, 1971), reflecting 
‘substantial’ agreement (Landis & Koch, 1977). Hence, we consider the DT archetypes valid and reliable. 

Third, during the external Q-sort, we also asked the industry experts to assess the perceived usefulness 
of the taxonomy and archetypes. The experts confirmed that, from their perspective, both artifacts cover 
the full range of DTs, and that the dimensions and characteristics of the taxonomy and the purpose-
related nomenclature of the archetypes are easy to understand. Regarding applicability, the experts 
shared their ideas for using the taxonomy and archetypes. On the one hand, they argued that DT has long 
been an integral part of their organizations’ strategic considerations. Hence, they stated that both artifacts 
would help to stimulate and structure strategic discussions among organizational stakeholders, e.g., Chief 
Technology or Digital Officers (CTO and CDO), product designers, or technical solution architects. For 
instance, the taxonomy and archetypes could be transferred into a monitoring tool to track current DT 
usage and identify ‘blind spots’ of DT purposes as input for respective discussions. Along these lines, the 
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archetypes’ purpose-related perspective is considered particularly useful for communicating with the (non-
technical) senior management, for which detailed discussions about a DT’s technical features are rarely 
necessary. On the other hand, the experts highlighted that the taxonomy and archetypes might also be 
used to systematically screen technological trends on the market to identify relevant emerging DTs. 
Organizations might even use the taxonomy and archetypes to support their DT design efforts, e.g., as a 
strategic compass to design DTs serving existing or new purposes in their business context. In Sections 
7.3 and 7.4, we revisit the experts’ feedback and ideas when discussing managerial implications of our 
results and potential future research. 

Fourth, in line with the organizational systematics paradigm (McKelvey, 1982; Ross, 1974), we challenged 
the archetypes’ robustness over time by examining their year-wise occurrence in the GHC. While our 
sample used for developing the taxonomy and archetypes covered the years 2009 to 2017, this analysis 
comprised the years 2000 to 2020 to assess whether the archetypes also apply to DTs beyond the 
original sample used for their development (i.e., test data). To that end, two co-authors independently 
mapped 191 related DTs to our archetypes, yielding ‘almost perfect’ agreement (Landis & Koch, 1977). 
This result strengthens our confidence that the purpose-related DT archetypes are sufficiently concrete to 
appropriately reflect the purpose diversity of DTs over time and, at the same time, sufficiently abstract to 
be persistence over a reasonably long period of time, even beyond the considered time frame for 
development.  

This longitudinal analysis also enabled us to better understand the evolution of the DT construct and its 
diverse purposes over time. Figure 3 shows three time slices comprising seven consecutive years of the 
GHC each, yielding the following insights: On the one hand, infrastructure technologies including 
connectivity & computation, platform provision, and personal mobile communication have accounted for 
almost 60% of DTs at the beginning of the millennium. To date, they have lost significant share or even 
disappeared from the GHC as in the case of personal mobile communication. Disappearance, however, 
does not mean that the DTs have disappeared from the market. Rather, it refers to an end of the listing as 
an emerging DT in the GHC. On the other hand, the shares of application technologies have significantly 
increased such that the overall distribution of DT archetype is much more balanced. In particular, the 
shares of intelligence technologies (e.g., analytical insight generation) and interaction technologies (e.g., 
natural interaction) have grown, and self-dependent material agency has emerged as a novel DT 
archetype of intelligence technologies. In sum, the longitudinal analysis reflects the evolution of the DT 
construct from a rather concentrated to a more balanced and purpose-diverse distribution, whereas it is 
noteworthy that most DT archetypes have already been present in early editions of the GHC.  

 

Figure 4. Distribution of the Purpose-related Archetypes between 2000 and 2020 
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7 Discussion 

7.1 Contribution 

Although purpose is an inherently important aspect of DT’s nature and use in practice (Ciriello et al., 2019; 
Faulkner & Runde, 2019; Hund et al., 2021), a classification of DTs through their diverse purposes is 
missing. As we are convinced that IS researchers and practitioners would benefit from a purpose-related 
classification of DTs (Gregor, 2006; Kundisch et al., 2021), we set out to study how DTs can be classified 
through their purposes. To address this question, we followed an organizational systematics paradigm 
(McKelvey, 1982) and built a taxonomic theory for DT, comprising two artifacts. First, we followed 
Nickerson et al. (2013) to develop a multi-layer taxonomy for DT incorporating 8 dimensions and 20 
characteristics. The taxonomy enables the classification of individual DTs assessing similarities and 
differences. Second, we used the taxonomy and applied a cluster analysis to inductively develop nine 
purpose-related DT archetypes, which can be further differentiated into infrastructure and application 
technology. We drew from justificatory knowledge to substantiate each archetype and empirically 
validated both artifacts (i.e., the taxonomy and the archetypes) during an intensive evaluation. 

In line with Gregor (2006) and Gregor and Hevner (2013), we understand the presented taxonomic theory 
as a theory for analyzing that contributes to IS research in three ways. First, our results are a useful 
foundation for other scholars as we not only consolidated many years of profound discourse and data on 
DT but also added to the descriptive knowledge on DT. We thereby argue that the taxonomic theory 
exceeds existing technology classifications by being the first that (1) has been rigorously developed, (2) 
considers the nature of DT, (3) is sufficiently concrete to reflect the diverse purposes of DT, and (4) is 
sufficiently abstract to be persistent (over a reasonably long period of time). Second, our results reinforce 
the importance of discussing the purpose of DTs by shifting from a purely technical to a purpose-related 
perspective that considers the interplay of technology, task, and human (Zigurs & Buckland, 1998). In this 
regard, our findings directly build on and advance preliminary work by Faulkner and Runde (2019) and 
Hund et al. (2021), as we structure and specify the purposes that DT can acquire as part of its social 
positioning. The taxonomic theory also comprises easily applicable mechanisms to categorize established 
and emergent DTs (Laycey et al., 2019) based on their purpose. For example, we specified which 
characteristics of DT (i.e., as listed in the taxonomy) are unique for each archetype. We argue that our 
taxonomic theory, especially the taxonomy underlying the purpose-related archetypes, supports such 
classifying mechanisms for DT and its diverse purposes which reaches beyond existing technology 
classifications. Third, we built and followed an unusual research approach by analyzing DTs close to 
practice, i.e., using the GHC as a data source, and by combining multiple methodological components. 
Our study may, hence, motivate other scholars to follow our approach addressing similar problems or 
serve as a blueprint on how combining research methods in a new manner can generate novel insights for 
existing phenomena. 

7.2 Theoretical Implications 

Our work connects to the ongoing discussions on the nature of DT (Faulkner & Runde, 2019; Kallinikos et 
al., 2013) and its purposes in social contexts (Ciriello et al., 2019; Hund et al., 2021). Along these lines, 
our theoretical implications are twofold, 1) advancing our understanding of the diverse purposes of DT a 
well as 2) laying the ground for further theorizing around the DT construct. 

7.2.1 Advancing our Understanding of the diverse Purposes of DT 

Our work extends existing knowledge on the nature of DT (e.g., Baskerville et al. (2020), Kallinikos et al. 
(2013), and Yoo et al. (2010)) targeting the diverse purposes of DT. Our taxonomic theory, thereby, is not 
only useful for describing but also valuable for analyzing the past and future development of DT purposes. 
More precisely, based on a longitudinal analysis as part of our evaluation (McKelvey, 1982), we 
demonstrated its usefulness for providing insights into the (historical) evolution of the DT construct and the 
shift from IT to DT. Although we only used a sub-set (i.e., 92 DTs from 2009 to 2017) of the full sample of 
DTs from the GHC between 2000 and 2020 to develop the taxonomy and DT archetypes, all 191 DTs 
could be sorted to one of the DT archetypes and most archetypes have been reflected across the years 
(from the beginning of the GHC in 2000) with varying shares. These varying shares reflect the growing 
purpose diversity of DTs. While the share of infrastructure technologies (e.g., connectivity & computation) 
accounted for almost 60% from 2000 to 2006, DTs have spread across application technologies (e.g., 
self-dependent material agency) such that the distribution of the DT archetypes is much more balanced 
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today. In this regard, the traditional understanding of IT as a collector, storage, processor, and transmitter 
of information (Boaden & Lockett, 1991) can be associated with the identified infrastructure technologies. 

Our analysis confirms the shift from a predominance of infrastructure technologies to an almost equal 
distribution of DT archetypes today. The existence of such a shift has already been mentioned in previous 
seminal studies, e.g., in Hirschheim and Klein’s (2012) and Baskerville et al.‘s (2020) descriptions of IS 
research history. While one part of the IS field traditionally focused on improving hardware components, 
another focused on improving usability of the information provided by IT. To do so, researchers and 
practitioners had to push the limits of what technologies could do, leading to the emergence of novel 
technologies that support new purposes such as decision making, knowledge management or business 
intelligence. Our work, on the one hand, offers further orientation for distinguishing IT from DT in terms of 
purpose diversity (Baskerville et al., 2020). On the other hand, we find that today’s DT construct still 
covers novel infrastructure technologies (e.g., 5G or Quantum Computing). Our findings therefore suggest 
that—although there is a growing share of application technologies—one should not neglect infrastructure 
technologies (i.e., traditionally referred to as IT) needed for representing and modelling reality. These DTs 
continue to be the foundation for digital opportunities, not only for single corporations but for entire 
industries and economies. With this, we contribute to but also plead for a more differentiated perspective 
on the DT construct. 

7.2.2 Laying the Ground for further Theorizing around the DT Construct 

Our work accumulates and structures a lot of data about DT which facilitates further theorizing on the DT 
construct in three ways. First, by being sufficiently concrete to be useful and sufficiently abstract to be 
robust, our taxonomic theory enables researchers to theorize beyond the level of individual DTs and focus 
on purpose-related DT archetypes. To do so, the taxonomy provides a nomenclature for scholars to be 
consistent and specific when referring to DT. By being consistent regarding DT terminology and meaning, 
it becomes easier to understand which discussion in the literature a DT-related study joins, how it 
compares to the existing body of knowledge (e.g., where it overlaps or contradicts), and consequently 
what knowledge new findings add. Moreover, we can use the taxonomic theory to accumulate and 
structure even more data around specific purposes of DT in the future. Further, IS researchers can be 
specific in characterizing the DT and the context they are studying (Benbasat & Zmud, 2003; Orlikowski & 
Iacono, 2001), facilitating discussions around the generalizability of results (Lee & Baskerville, 2003) and 
avoiding ambiguous results that lack contextualization (Hong, Chan, Thong, Chasalow, & Dhillon, 2014). 

Second, the taxonomic theory would allow for more precise explanations (e.g., towards a Type II theory) 
of the effects of DT for different phenomena. For example, focusing on digital entrepreneurship, Kreuzer 
et al. (2022) identified effects of DT on opportunity recognition based on a high-level understanding of DT. 
Further research could leverage our results to differentiate what effects arise from which DT purposes. In 
a similar way, the work by Oberländer et al. (2021) – which developed classes of digital opportunities and 
stylized facts of opportunity conversion – could be extended by understanding which DT archetypes drive 
which digital opportunity classes. Such an approach, based on our taxonomic theory, may also be used to 
advance long-standing and nascent IS theories, e.g., technology acceptance (Venkatesh & Bala, 2008; 
Venkatesh, Morris, & Davis, 2003) or (dis-) continuance of use (Bhattacherjee, 2001; Mehrizi, Rodon, & 
Mezhad, 2019). Instead of building on a general idea of DT, building on our taxonomic theory could lead 
to more robust results on the level of purpose-related DT archetypes while also being much more 
concrete. Further, the taxonomic theory allows for investigating the relationships among DT purposes, 
industrial and/or organizational contexts, as well as related implementation requirements or success 
factors. In doing so, IS research can, for example, examine the hypothesis that some purposes are more 
suitable than others to develop digital innovation or to drive digital transformation in specific industries. 

Third, the taxonomic theory as a theory for analyzing (Gregor, 2006; Gregor & Hevner, 2013) represents a 
fundamental step towards other types of theory, i.e., theories for predicting (i.e., Types III– IV) as well as 
design and action (i.e., Type V). Regarding prediction, other researchers can, for example, use the 
findings of the longitudinal analysis to theorize on how purposes of DT will evolve in the future. Regarding 
design and action, other researchers could study whether there are distinct design principles underlying 
DT archetypes and how each principle influences the extent to which a DT fulfills its desired purpose. 
These design principles could be, for example, used to develop guidelines or best practices for designing 
DT serving specific purposes. Moreover, such design principles may serve as valuable input for design 
science research to span the solution space for the development of novel digital artifacts (Gregor 
& Hevner, 2013). 
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7.3 Managerial Implications 

From the standpoint of practice, our paper also provides a relevant contribution (Corley & Gioia, 2011; 
Moeini, Rahrovani, & Chan, 2019) with major implications for managers that are involved in DT decision-
making. On the one hand, this may be a technology consultant that specializes in supporting 
organizations, for example, in the evaluation of their current technology portfolio or in make-or-buy-
decision. On the other hand, this may be an executive responsible for an organization’s technological and 
digital matters, i.e., a CTO or CDO. The roles of CTO and CDO have gained increasing strategic 
importance as a driver of organizational performance (Medcof & Lee, 2017; Tumbas, Berente, & vom 
Brocke, 2018). A CTO’s tasks include, among others, aligning “technology strategy with corporate strategy 
and business model”, selecting “technologies to adopt or discard”, and managing “new technology 
development” (Medcof & Lee, 2017, p. 4). Complementary, a CDO’s tasks revolve around “developing the 
emerging digital logic of action, and […] enacting this digital logic through strategies such as grafting, 
bridging, and decoupling to navigate tensions between the existing and emerging approaches to 
innovation with digital technologies” (Tumbas et al., 2018, p. 188). Considering these “personas” and their 
responsibilities, we argue that our results yield three major practical implications for managers.  

Managers should leverage the taxonomy and archetypes to assess the current DT portfolio in an 
organization. Using our results, technology consultants can determine the status quo of DT usage in an 
organization by determining which purposes the DT portfolio currently covers (McKeen & Smith, 2002, 
2006). In doing so, they may be able to locate blind spots, i.e., missing elements that are crucial to 
support or enable the corporate strategy, more effectively. Using our taxonomic theory, the identification of 
key technologies, which create competitive advantages or are essential for business operations, becomes 
feasible. In line with McKelvey (1982), CTOs should also track their organization’s DT usage over time. 
While practitioners have been facing the variety of DTs in terms of technology lists and trend reports 
(Adomavicius et al., 2008), thinking in terms of DT archetypes enables and improves the structured 
handling and discussion of DTs in everyday business. 

Managers should shift their perspective on DT investment decisions from a technical to a purpose 
perspective. Deciding on the right DT investment to address a current problem or opportunity is one of the 
core tasks of a technology consultant, CTO and CDO. As there are many factors that influence an 
investment decision, e.g., cost or effectiveness, it is easy to get lost in comparing detailed technical 
functionalities of individual DTs or requirements. Further, there might be a bias towards one technology 
that is “en vogue” at that point in time. In line with our purpose-related perspective, we propose that 
managers should abstract from specific functionalities or requirements and think about the overarching 
purpose a solution should have. For example, managers could follow a stepwise approach to make DT 
investment decisions, referring to the purpose-related DT archetypes as long as possible, before 
evaluating and prioritizing individual DTs therein from a task-technology-fit perspective in further detail 
(Denner et al., 2018). This will enhance both the efficiency and effectiveness of DT decisions 

Managers should use the taxonomy and archetypes to develop and design DT. In line with Gross et al. 
(2021), we argue that our taxonomy can be seen as a design space (MacLean, Young, Bellotti, & Moran, 
1991) providing a structured overview of designs choices for the development of DTs. On the one hand, 
organizations might need a DT for a specific purpose. Managers can then use our taxonomic theory to 
identify the (usual) characteristics of DTs serving this purpose and design the solution accordingly, e.g., 
based on design principles underlying each DT archetype (see Section 7.2.2). On the other hand, 
organizations might face a complex challenge that requires them to combine multiple DT purposes into a 
novel technical solution as part of a product or service. To do so, managers can decide on a suitable set 
of DT archetypes, screen all DTs that serve the respective purposes, and select the most fitting ones, e.g., 
in terms of affordability or availability. 

7.4 Limitations and Further Research 

Although we believe that our findings offer significant insights regarding the DT construct, as any 
research, our findings are beset with limitations. 

First, we argued that our taxonomic theory is sufficiently abstract to be persistent over a reasonably long 
period of time and hope that it is useful for at least one generation of technological evolution in its current 
form. However, in line with seminal work on taxonomy research by Bailey (1994), Nickerson et al. (2013), 
and Kundisch et al. (2021), there are limits to any taxonomy in a changing environment. This is especially 
true for such a dynamic topic as digitalization, which is often seen as a catalysator for but also prone to 



579 What Makes Digital Technology? A Categorization Based on Purpose 

 

  Accepted Manuscript 

 

volatility, uncertainty, complexity, and ambiguity (Buckley, 2020). Hence, we cannot ensure that the 
developed categories will resist any technological change in the future. Continuing to apply an outdated 
taxonomic theory entails risks, e.g., when it is used to build other more advanced types of theory. To 
counteract this issue and remain useful, taxonomies should be adaptable and extendible (Nickerson et al., 
2013). Therefore, we recommend that future research periodically evaluates whether our taxonomic 
theory is still valid and, if necessary, updates it by using our thorough descriptions of the development 
process and corresponding data.  

Second, there are limitations resulting from our research design decisions. On the one hand, we 
developed the taxonomy and purpose-related DT archetypes based on a sample of 92 DTs covering the 
2009 to 2017 editions of the GHC as primary data source. We are convinced that the sample has been 
compiled with due care as we used other technology reports for cross-checking purposes and the GHC 
between 2000 and 2020 for evaluation. However, the specific compilation of the sample may have 
influenced our findings and we cannot formally exclude subjective bias in the author team when 
interpreting the DT definitions provided in the GHC. Moreover, there might be technologies outside the 
GHC that could be categorized as DTs and, thus, deserve scrutiny and classification based on their 
purpose. On the other hand, owing to the fast-moving nature and diversity of DTs, we developed the 
purpose-related DT archetypes inductively. As a result, the delineation among the archetypes is not as 
sharp as if we had developed them deductively, which was also highlighted by the experts during the Q-
sort. To some extent, one could argue that our archetypes reflect the way people see and categorize DTs 
(i.e., from a purpose perspective), and not necessarily the technical aspects that distinguish one DT from 
another. Moreover, identifying meaningful, purpose-related names for the DT archetypes was an 
interpretative task and, in the end, subjectively influenced – even if the entire author team was involved 
and the names were validated by industry experts. Future research may critically challenge the aspects of 
our research that are prone to subjectivity e.g., by following a similar approach based on another sample 
of DTs or by developing and validating competing nomenclatures. 

Third, there are limits to our taxonomic theory as it has not been tested in actual application. Although we 
highlighted some ideas for practical application of our results in Section 7.3, these ideas are based on the 
results of the external Q-sort, and the creativity and limited experience of the authors. While testing these 
ideas exceeds the scope of our research, future work may build prototypes or methods for our taxonomic 
theory and apply them in practice. This will provide further insights into the usefulness of approaches that 
take a purpose perspective on DT and may stimulate a new way of thinking and discussing technology. 

8 Concluding Remarks 

Given the growing number and diversity of DTs as well as the increasing research on digitalization, we 
believe that it is our responsibility as IS scholars to advance our understanding of DT, a construct located 
at the heart of the discipline. We see our research as an important step towards this goal. To the best of 
our knowledge, our taxonomic theory presents a novel purpose-related understanding and classification of 
DT that bridges the gap between individual DTs and the general umbrella term and allows for a structured 
analysis of DT through its diverse purposes. The DT archetypes may be used to contextualize existing IS 
theories and serve as foundation for future sense-making and design-oriented research. In practice, they 
may help mangers to assess and select DTs in a clear-headed manner based on their purposes instead of 
having to rely on ephemeral technology lists and trend reports.
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Appendix A: Comparison of Existing Technology Classifications 

To emphasize the need for a purpose-related classification and to outline the existing knowledge base, we 
compare existing technology classifications from academia and practice according to four criteria that are 
relevant for classifying DT through its purposes: 1) Rigorously developed, 2) applicable to DT, 3) 
sufficiently concrete to reflect the diverse purposes of DT and 4) sufficiently abstract to be persistent. We 
considered existing technology classifications from the academic IS literature as well as professional 
literature, which offer more tangible yet a-theoretical approaches. In Table A1, we present a list of all 
technology classifications which we considered. We name the term they use for technology, list the 
classes or categories they provide, and give an assessment which of the four criteria they address. While 
our list may be not exhaustive, we are confident that it covers a relevant and representative sample. We 
find that, a digital technology classification that addresses all four criteria is yet missing. 

Table A1. Technology Classifications 

Paper Term Classes/Categories 1) * 2) * 3) * 4) * 

Accenture, 2019 DT 
Distributed ledger, Artificial 
Intelligence, Extended Reality, 
and Quantum Computing 

 X  X 

Agrawal, Chari, & Sankar, 
2003 

Wireless 
Technology 

Data rate, modulation, frequency 
band, logical topology, 
compatibility with previous 
generations 

X  X  

Bharadwaj, El Sawy, Pavlou, 
& Venkatraman, 2013 

DT 
Information, Computing, 
Communication, and Connectivity 

X X  X 

Davis, 2000 IT 

Infrastructure, Repositories, or 
Applications for Transaction, 
Processing, Operations, 
Administration, or Management 

X  X X 

Evans, 2016 Technology Social, Mobile, Analytics, Cloud  X  X 

Fitzgerald, Kruschwitz, 
Bonnet, & Welch, 2014 

DT 
Social media, mobile, analytics, 
embedded devices 

 X  X 

Hevner & Park, 2004 IT Artifact 
Constructs, Models, Methods, 
Instantiations 

    

Janssen, Passlick, 
Rodríguez Cardona, & 
Breitner, 2020 

Virtual 
Assistance 

Goal-oriented daily chatbot, non-
goal-oriented daily chatbot, utility 
facilitator chatbot, utility expert 
chatbot, relationship-oriented 
chatbot 

X X X  

Kling & Scacchi, 1982 
Computer 
Technology 

Computing resource, 
infrastructure 

X   X 

Kohli & Sherer, 2002 IT 
Operational IT, Managerial IT, 
Strategic IT 

X   X 

Nevo, Nevo, & Ein-Dor, 
2010 

IT 

Commerce and Transaction, 
Product Design and 
Development, Internal Focus, 
External Focus, Operational, 
Decision Support Systems 

X   X 

Orlikowski & Iacono, 2001 IT Artifact 
Tool, Proxy, Computational, 
Ensemble, Nominal 

X  X X 

Sebastian, Moloney, Ross, 
& Fonstadt, 2017 

DT 
Social, Mobile, Analytics, Cloud, 
Internet of Things, Platforms 

 X  X 

Power, 2004 
Decision 
Support 
Systems 

Dominant Component, Targeted 
User, Purpose, Deployment and 
Enabling Technology 

X    

Sawyer & Huang, 2007 Technology 
Feature, Function, Proxy, Proof 
of Concept, Presence/Absence 

X  X  
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Shim, Sharda, French, 
Syler, & Patten, 2020 

IoT 

Utilities, Supply Chain, Logistics, 
Transportation, Consumer 
Electronic, Public Sector, Smart 
Cities, Smart Buildings, Industrial 
Automation 

X X   

Van der Valk, Haße, Möller, 
& Otto, 2021 

Digital twin 

Data Acquisition, Data Source, 
Synchronization, Data Input, 
Data Governance, Data Link, 
Interface, Interoperability, 
Purpose, Accuracy, Conceptual 
Elements, Time of Creation 

X X X  

Vial, 2019 DT 
Social, Mobile, Analytics, Cloud, 
Internet of Things, Platforms 

X X  X 

Yang & Tate, 2012 
Cloud 
Computing 

Service Levels, Deployment 
Models, Essential Characteristics 

X X X  

Yoo, Henfridsson, & 
Lyytinen, 2010 

DT 
Content, Service, Network, 
Device 

X X  X 

*Note: 1) Rigorously developed, 2) applicable to DT, 3) sufficiently concrete to reflect the diverse purposes of DT and 4) 
sufficiently abstract to be persistent. 
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Appendix B: Sample of Digital Technologies 

Table B1 lists all technologies included in the GHC from 2009 to 2017. The column ‘year of publication’ 
indicates in which years each technology appeared. The second set of columns lists the assessment 
requirements, based on which we compiled the sample of digital technologies that we used as the 
foundation for the development of our taxonomy. We checked (in a binary manner, i.e., yes or no) whether 
a technology (1) is assessable based on publicly available information, (2) is on the ‘approach’ layer as 
defined in the manuscript, and (3) complies with the properties of DTs as per Yoo et al. (2010). We 
checked these requirements in the given order and stopped as soon as one of the requirements was not 
met. A technology was included and referred to as a DT, if it met all requirements. Thirdly, the ‘additional 
sources’ columns show in which other technology reports a technology was included. The column ‘sample 
of classification’ shows in which iterations of our taxonomy development process a technology was 
considered. The last column indicates which purpose-related archetype a technology has been assigned 
to 

Table B1. List of Examined Technologies from the Gartner Hype Cycle for Emerging Technologies from 2009 
to 2017. 
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Appendix C: Development of a Taxonomy of Digital Technologies 

In the following, we provide details of our five iterations. We structure the following paragraphs in 
accordance with the taxonomy development process as per Nickerson, Varshney, and Muntermann 
(2013) (Figure C1). 

 

Figure C1. Taxonomy Development Method as per Nickerson et al. (2013) 

 

Step 1: In line with our idea of using the taxonomy as a means for classifying individual DTs and 
for developing purpose-related DT archetypes, we chose ‘characteristics of individual DTs’ 
as our meta-characteristic. 

Step 2: As recommended by Nickerson et al. (2013), we used the following objective ending 
conditions:  

(1) each characteristic is unique within its dimension,  

(2) each dimension is unique and not repeated within the taxonomy,  

(3) at least one object must be identified per characteristic and dimension, and  

(4) an iteration does not imply further modification of the taxonomy 

In line with Nickerson et al. (2013), we also chose the following subjective ending 

condition: All co-authors agree that the taxonomy is concise, robust, comprehensive, 

extendible, and explanatory. 

After determining objective and subjective ending conditions, we chose either the conceptual-to-empirical, 
i.e., deductive conceptualization of dimensions and characteristics primarily based on literature and 
complemented by the researchers’ creativity and justificatory knowledge, or the empirical-to conceptual 
approach, i.e., identification of a sample of real-life objects and subsequent inductive derivation of 
dimensions and characteristics. Figure C2 lists details on the used approaches across iterations, the 
corresponding sample compositions, and number of DTs per iteration along with associated 
methodological decisions and justification. 
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Figure C2. Details on Approach, Sample Compilation, and Methodological Decisions per Iteration 

 
Iteration 1 

Step 3:  As there is a large body of literature on the subject, we decided to use this as a starting 
point for our taxonomy development process and, consequently, applied the conceptual-
to-empirical approach. 

Step 4c:  We conducted an extensive literature review, spanning from very concrete technologies 
such as Volumetric Displays to more abstract and general concepts such as Smart 
Robots. To identify DTs, we analyzed technology and trend reports (see Table B1). During 
this process, we found that the extent and level of detail of DT definitions varies widely 
across different sources. Further, certain technologies did not comply with our 
understanding of digital. Therefore, we developed clear assessment criteria in order to 
identify a sample of DTs (see ‘Compiling a Sample of Digital Technologies’). As a 
prerequisite, each DT had to be different from any other DT. We also reduced the sample 
in accordance with the following formal and content-oriented requirements: (1) the 
definition of a DT included in the GHC had to provide sufficient information for 
classification, (2) the DTs had to be on the same level of abstraction, and (3) each DT had 
to comply with Yoo et al. (2010) DT properties of re-programmability, homogenization of 
data, and self-referential nature.  

Based on our literature review, we conceptualized an initial superset of layers, 
dimensions, and characteristics, building the foundation for the following iterations. Table 
C1 summarizes the given definitions and justificatory references. The layers are partly 
based on different sources: High level (Arthur, 2009), Hype Cycle (Gartner Inc., 2009, 
2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017), Device (Benkler, 2006; Horvath & 
Gerritsen, 2012; Yoo et al., 2010), Interaction (Borgia, 2014; Fleisch, Weinberger, & 
Wortmann, 2014; Püschel et al., 2020), Data (Bharadwaj et al., 2013; Bucherer & 
Uckelmann, 2011; Porter & Heppelmann, 2014), and Service (Fleisch et al., 2014; 
Püschel et al., 2020; Yoo et al., 2010) 

Step 5c: From the examined body of literature we identified a loose list of several different DTs and 
tested them against the listed characteristics in Table C1. The identified dimensions and 
characteristics are in line with our meta-characteristic, i.e., characteristics of DTs. 

Step 6c: We grouped all of the identified dimensions and characteristics in order to create the first 
version of our taxonomy (see Table C1). Following the taxonomy notation of Nickerson et 
al. (2013), we depict a taxonomy T as a set of n layers Li (i=1, …, n) with m dimensions Dij 
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(j=1, …, m) each consisting of lk (lk≥2) characteristics Cijk (k=1, …, lk): 

T = {Li, i=1, …, n | Li = [Dij ,j=1, …, m | Dij, = (Cijk, k=1, …, lk; lk≥2 )]} 

 For the resulting taxonomy of the first iteration this leads to  
T1 = {High level [Role of Technology (Application, Component, Infrastructure)],  
Hype Cycle [Development Stage (Technology Trigger, Peak of Inflated Expectations, 
Trough of Disillusionment, Slope of Enlightenment, Plateau of Productivity)], 
Device [Scope (Cyber, Synergic, Physical)], 
Interaction [Multiplicity (One-to-one, One-to-many, Many-to-many),  
Direction (Uni-directional, Bi-directional)],  
Data [Data Treatment (Collection, Aggregation, Analysis, Execution), Input (Digital, 
Physical, Visual, Acoustic), Output (Digital, Physical, Visual, Acoustic)], 

Service [Main Principle (Information Gathering, Efficiency Enhancement, Customer Focus, 
Ubiquity), Domain (Cross-sectional, Specific)]} 

Step 7:  The taxonomy resulting from the first iteration did not yet meet the required subjective and 
objective ending conditions. In particular, we were not able to identify at least one real-life 
object for each characteristic. Due to a large number of dimensions and characteristics, 
the first version was also not concise. Hence, we decided to conduct a further iteration. 

Table C1. Taxonomy of Digital Technologies after Completing the First Iteration 

Layer Dimension Characteristics and their Definition Justificatory References 

High Level 
Role of  
Technology 

Application: Provision of usability and added value on its own. 

Component: Creation of higher-level DTs through combination with and extension of 
existing DTs. 

Infrastructure: Enhances the use of other DTs. 

Adomavicius et al. (2004) 

Hype  
Cycle 

Development 
Stage 

Technology Trigger: Potential technology breakthroughs and first proof-of-concepts. 

Peak of Inflated Expectations: Application limited to a few companies. 

Trough of Disillusionment: Fail of implementations, further investments into DT in doubt. 

Slope of Enlightenment: Roll out of second and third generation products. 

Plateau of Productivity: Mainstream adoption. 

(Gartner Inc., 2009, 2010, 2011, 
2012, 2013, 2014, 2015, 2016, 
2017) 

Device Scope 

Cyber: Acting focus in cyber domain. 

Synergic: No focus, support of interaction and affection of both domains. 

Physical: Acting focus in physical domain. 

Broy et al. (2012); Horvath and 
Gerritsen (2012); Kagermann et 
al. (2013); Zamfirescu et al. 
(2014) 

Inter- 
action 

Multiplicity 

One-to-one: Interaction between two entities. 

One-to-many: Connection of various entities, acting as a hub. 

Many-to-many: Interaction between multiple entities simultaneously. 

Porter and Heppelmann (2014); 
Püschel et al. (2020); Oberländer 
et al. (2018) 

Direction 
Uni-directional: Data flow in one direction. 

Bi-directional: Data flow in more than one direction. 

Püschel et al. (2020); Oberländer 
et al. (2018); Suchman (2009) 

Data 

Data  
Treatment 

Collection: Creation of new data. 

Aggregation: Aggregation of existing data 

Analysis: Interpretation of existing data on the basis of an underlying logic. 

Execution: Trigger of (data) activities on the basis of instructions or commands 

Borgia (2014); Püschel et al. 
(2020); Miller and Mork (2013) 

Input 

Digital: Digital form of data input. 

Physical: Physical form of data input. 

Visual: Visual form of data input. 

Acoustic: Acoustic form of data input. 

Derived based on the  
reserachers’ experience 
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Iteration 2 

Step 3: To enhance the initial taxonomy, we decided to classify existing DTs and continued the 
development process by applying the empirical-to-conceptual approach. In line with 
Gregor (2006), Williams, Chatterjee, and Rossi (2008), Tsatsou, Elaluf-Calderwood, and 
Liebenau (2010), and F. von Briel and Schneider (2012), we tested the layers, 
dimensions, and characteristics of our taxonomy in subsequent iterations by classifying 
DTs and adjusting the taxonomy accordingly. 

Step 4e: In line with Gregor (2006), Williams, Chatterjee, and Rossi (2008), Tsatsou, Elaluf-
Calderwood, and Liebenau (2010), and F. von Briel and Schneider (2012), we tested the 
layers, dimensions, and characteristics of our taxonomy by classifying DTs and adjusting 
the taxonomy accordingly. To begin, we chose 46 DTs from the GHC from 2015 to 2017 
(Gartner Inc., 2015, 2016, 2017). To evaluate the usefulness of the taxonomy, the sample 
was classified by two co-authors, working independently from one another. 

Step 5e: Based on our sample, we identified the following DT characteristics:  

• Aggregation of existing data from different data sources (data collection) 

• Provision of data to support decision making and/or the actual process of decision 
(decision support & making)  

• Capability of converting digital data into other forms (physical, visual, acoustic) or 
change of the digital depiction (data-to-X) 

• Enabling of location independent connectivity and accessibility of information, objects, 
people, and activities 

• Maximization of the result for a given input or minimization of the input for a given 
result. Variables are, inter alia, scalability, transmission rate, amount of data, or power 
rate (performance improvement) 

For example, Smart Dust is focused on the aggregation and collection of data, while 
Cognitive Expert Advisors support decision making through big data approaches. 4D 
Printing converts digital data into physical products. 802.11ax connects devices via Wi-Fi. 
Neuromorphic Hardware raises computing power. 

• DT in hype phase. Not frequently used (fashionable) 

• DT is widely known and accepted. Frequently used (established) 

• DT which did not establish itself or got replaced by other technology after hype phase 
(outdated) 

For example, Volumetric Displays are still a vision and only few prototypes exist. Machine 
Learning is already established and widely used in different contexts. A popular example 
for an outdated DT is Public Virtual Worlds which couldn’t be established. 

• Use of the DT in business context 

• Use of the DT in private context 

Output 

Digital: Digital form of data output. 

Physical: Physical form of data output. 

Visual: Visual form of data output. 

Acoustic: Acoustic form of data output. 

Derived based on the  
reserachers’ experience 

Service 

Main  
Principle 

Information Gathering: Gathering large amounts of data. 

Efficiency Enhancement: Transforming data into valuable knowledge. 

Customer Focus: Easing customer interaction. 

Ubiquity: Enabling location independent connectivity. 

BarNir, Gallaugher, and Auger 
(2003), Iansitiy and Lakhani 
(2014), Pousttchi and Thurnher 
(2006) 

Domain 
Cross-sectional: Applicable in various areas and for several purposes. 

Specific: Applicable for specific purpose. 

Gerpott (2013) 
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• Use of the DT in business and private context 

While Enterprise Taxonomy and Ontology Management is used in business, Connected 
Home has a focus on private households. 

• DT transfers existing data. No modification of the content. (transmission) 

For example, 802.11ax and other Wi-Fi networks only transfer data. 
All listed characteristics were in line with the meta-characteristic as they represent DT 
characteristics. 

Step 6e: We recognized that the characteristics data collection, decision support & making, data-to-
X, connectivity, performance improvement describe the purpose of a DT more precisely 
than information gathering, efficiency enhancement, customer focus, and ubiquity of 
iteration 1. Thus, we replaced these characteristics: 

• Dimension Main Principle: data collection, decision support & making, data-to-X, 

connectivity, performance improvement 

In contrast, the recognized characteristics of the dimension Hype Cycle turned out to be to 
narrow, especially when considering a longer time period. Thus, we replaced the 
characteristics of Iteration 1 (technology trigger, peak of inflated expectations, trough of 
disillusionment, slope of enlightenment, plateau of productivity):  

• Dimension Hype Cycle: fashionable, established, outdated 

We identified a new dimension which focuses on the context in which a DT is used. Thus, 
we added the following dimension: 

• Dimension Context: business, private, business & private 

The remaining characteristics were additional characteristics to dimensions we identified 
previously. Thus, these dimensions became: 

• Dimension Data Treatment: collection, aggregation, analysis, execution, transmission 

The layer structure of Iteration 1 remained unchanged (High-level, Hype Cycle, Device, 
Interaction, Data, Service). The dimension context became part of the High level layer. 

After revising the layers, dimensions, and characteristics, we received the following 
taxonomy: 

T2 = {High level [Role of Technology (Application, Component, Infrastructure),  
Context (Business, Private, Business & Private],  
Hype Cycle [Development Stage (Fashionable, Established, Outdated)], 
Device [Scope (Cyber, Synergic, Physical)], 
Interaction [Multiplicity (One-to-one, One-to-many, Many-to-many),  
Direction (Uni-directional, Bi-directional)],  
Data [Data Treatment (Collection, Aggregation, Analysis, Execution, Transmission), Input 
(Digital, Physical, Visual, Acoustic), Output (Digital, Physical, Visual, Acoustic)], 
Service [Main Principle (data collection, decision support & making, data-to-X, 
connectivity, performance improvement), Domain (Cross-sectional, Specific)]} 

Step 7: As we added some dimensions and characteristics, the taxonomy is still not concise due 
to a large number of layers, dimensions, and characteristics. Also the taxonomy was not 
comprehensive as not all real-life objects could be classified. As the revised taxonomy did 
not meet our subjective ending conditions, we conducted a third iteration. 
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Iteration 3 

Step 3: Once again, we followed the empirical-to-conceptual approach to further develop the 
taxonomy in response to the classification of real-world objects, i.e., DTs, by two focus 
groups involving IS academics. 

Step 4e: For this purpose, we asked the participants to classify a sample of ten DTs, which were 
selected to meet the following criteria: (1) at least two DTs for every characteristic had to 
be included, and (2) the sample had to be a proper subset of the 46 DTs used in the 
second iteration. To aid the classification, we shared instructions, including a detailed 
descriptions of the taxonomy and definitions of the selected DTs, as provided in the GHC. 
After all participants had completed the classifications, we discussed problems they had 
encountered and suggestions for improving the taxonomy in a joint workshop. Each focus 
group took 75 minutes and was hosted by two co-authors. The two focus groups were 
made up of eight and 20 participants from two different universities. The first focus group 
consisted of six doctoral students and two master’s students, while the second group 
included three professors, twelve doctoral students, and five master’s students. All 
participants shared an IS background with a focus on digitalization topics such as 
blockchain, smart factory, deep learning, smart things, big data, or augmented reality. 
After each focus group meeting, we analyzed the findings quantitatively (e.g. calculating 
hit ratios) and qualitatively and refined the taxonomy accordingly. 

Step 5e: Based on our sample, the co-authors and focus groups challenged the following DT 
characteristics:  

• fashionable 

• established 

• outdated 

We recognized that these characteristics are time dependent. However, characteristics 
should be “transcendent of a particular moment” (Williams, Chatterjee, & Rossi, 2008). 

• business 

• private 

• business & private 

For almost every DT we were able to create a scenario in which it could be used in a 
private and business environment. In addition, these characteristics do not describe the 
inherent nature of DTs, but rather their application area. 

• cross-sectional 

• specific 

Within the fast-moving field of digitalization, DTs are increasingly transferred to new 
application field, serving multiple purposes. Hence, these characteristics are time-bound. 

• synergic 

• physical 

We recognized blurring boundaries between those two characteristics which complicate 
intuitive classification. Furthermore, DT always include some kind of cyber component by 
their nature. For example, we assigned a physical focus to autonomous vehicles, because 
they move and change their physical environment. However, one could argue that they 
process data and therefore have a synergetic focus.  

• visual 

• acoustic 

The sample included various DTs, e.g., Augmented Reality, which may comprise several 
different inputs and outputs such as visual, acoustic, and physical. However, a clear 
assignment was not always possible. 
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• component 

The characteristic component refers to the combination of existing technologies to form 
new kinds of technologies (Adomavicius et al., 2004) and applied to almost every 
examined DT. For example, all DTs which collect data are sensor-based. Therefore, this 
characteristic did not yield any useful information.  

All listed characteristics were in line with the meta-characteristic as they represent DT 
characteristics. 

Step 6e: Due to their time dependency, we decided to delete the dimensions Development Stage 
and Domain and their characteristics without substitution. 

We deleted the Context dimension and its characteristics as they are highly dependent on 
the application area. 

Due to a missing delimitation, we joined the characteristics synergic and physical towards 
cyber-physical. Hence, we received the following dimension: 

• Dimension Scope: cyber, cyber-physical 

Due to a lack of discriminatory power, we deleted the characteristics visual and acoustic. 
However, we extended the definition of the characteristic physical to include acoustic and 
visual input and output: 

• Dimension Input / Output: digital, physical 

Due to a lack of information gain, we deleted the characteristic component, forming the 
following dimension: 

• Dimension Role of Technology: application, infrastructure 

Due to the elimination of the dimensions Hype Cycle and Context as well as the shift of 
the Role of Technology dimension towards the Device Layer, we deleted the layers High 
level and Hype Cycle. Hence, we received the following layers: Device, Interaction, Data, 
Service. 

After revising the layers, dimensions, and characteristics, we received the following 
taxonomy: 

T3 = {Device [Role of Technology (Application, Infrastructure), Scope (Cyber, Cyber-
physical)], 
Interaction [Multiplicity (One-to-one, One-to-many, Many-to-many), Direction 
(Uni-directional, Bi-directional)],  
Data [Data Treatment (Collection, Aggregation, Analysis, Execution, Transmission), Input 
(Digital, Physical), Output (Digital, Physical)], 
Service [Main Principle (data collection, decision support & making, data-to-X, 
connectivity, performance improvement)} 

Step 7:  The subjective ending conditions were not yet met as some participants were unable to 
classify DTs without the full range of information, and the taxonomy still comprised too 
many dimensions and characteristics. Having revised the taxonomy in response to the 
feedback from the focus groups, we conducted a fourth iteration. 

Iteration 4 

Step 3: Our main goal was to challenge the robustness of the taxonomy by considering more DTs. 
Hence, we applied the empirical-to-conceptual approach. 

Step 4e: In order to evaluate if the taxonomy covers the great variety of DTs, we extended the 
considered timeframe to the GHCs of 2009 to 2017, resulting in a sample of 92 DTs. 

Step 5e: Based on our sample, the co-authors challenged the following DT characteristics:  

• data collection 

• decision support & making 
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• data-to-X 

• connectivity 

• performance improvement 

The ‘main principle’ reflects the idea of Arthur (2009) and Ferré (1988), after which every 
technology serves distinct purposes. A purpose-oriented view is suitable for distinguishing 
DTs, as it complements the rather technical view on technologies. When classifying DTs, 
however, we recognized that a DT’s characteristics for the main principle dimension are a 
good indicator for its characteristics related to the other dimensions. 

Based on our sample, we identified the following DT characteristics:  

• active usage of a DT by humans  

• passive usage of a DT by humans 

All listed characteristics were in line with the meta-characteristic as they represent DT 
characteristics. 

Step 6e: Due to relations to other characteristics, we abandon the dimension Main Principle, but 
strived for higher-level insights by means of purpose-related archetypes. 

We identified a new dimension which focuses on the use of a DT. Thus, we added the 
following dimension: 

• Dimension Human Involvement: active usage, passive usage 

After reviewing the existing layers, we recognized similarities with regard to the layered 
architecture of Yoo et al. (2010). Whereas the layers service and device already existed 
within our taxonomy, the terms data and content as well interaction and network could be 
used interchangeably within our context. Hence, we decided to align our dimensions along 
the established architecture of Yoo et al. (2010), i.e., device, network, content, service .  

After revising the layers, dimensions, and characteristics, we received the following 
taxonomy: 

T4 = {Device [Role of Technology (Application, Infrastructure), Scope (Cyber, Cyber-
physical)], 
Network [Multiplicity (One-to-one, One-to-many, Many-to-many), Direction (Uni-directional, 
Bi-directional)],  
Content [Data Treatment (Collection, Aggregation, Analysis, Execution, Transmission), 
Input (Digital, Physical), Output (Digital, Physical)], 
Service [Human Involvement (Active Usage, Passive Usage)} 

Step 7:  The classification of these DTs only required minor changes to the taxonomy, e.g. the 
wording of single characteristics. The minimal adjustment needed in the fourth iteration 
reflected the increasing stability of the taxonomy. However, the ending condition of ‘no 
further modification’ was still not met. Hence, we conducted a fifth iteration. 

Iteration 5 

Step 3: With only marginal changes during the previous iteration, we again adopted the empirical-
to-conceptual approach. 

 Step 4e: To confirm the stable results of iteration 4, we repeated the classification with the same 
sample of 92 DTs from the GHC (2009 to 2017) as in iteration 4. 

Step 5e: Based on our sample, we did not identify new layers, dimensions, or characteristics.  

Step 6e: No changes to the taxonomy. Hence, the final version of the taxonomy is as follows: T5 = 
{Device [Role of Technology (Application, Infrastructure), Scope (Cyber, Cyber-physical)], 
Network [Multiplicity (One-to-one, One-to-many, Many-to-many), Direction (Uni-directional, 
Bi-directional)],  
Content [Data Treatment (Collection, Aggregation, Analysis, Execution, Transmission), 
Input (Digital, Physical), Output (Digital, Physical)], 
Service [Human Involvement (Active Usage, Passive Usage)} 
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Step 7: As no modifications were needed within this iteration, we agreed that the taxonomy now 
met the fourth objective ending condition. As all objective ending conditions had been met 
and the co-authors agreed that the taxonomy was concise, robust, comprehensive, 
extendible, and explanatory (Nickerson et al., 2013), we decided to refrain from another 
iteration and to consider the current version of the taxonomy as final. This version also 
served as a foundation for the derivation of purpose-related DT archetypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



605 What Makes Digital Technology? A Categorization Based on Purpose 

 

  Accepted Manuscript 

 

Appendix D: Details on Encoding and Measures to Decide on Cluster 
Solution 

As the meaningfulness of clustering results is dependent on the input data (Morrison, 1967) we strived for 
comparability among our input variables. All dimensions of our taxonomy are nominally scaled and either 
mutually exclusive or non-exclusive. As a distance measure, we chose the Manhattan-metric, an 
established approach which can deal with nominally scaled dimensions, has proven useful in combination 
with the Ward algorithm (Strauss & Maltitz, 2017), and has been applied in many other cases (e.g., N. C. 
M. Ross & Wolfram, 2000; Romero, González, Martín, Vázquez, & Ortiz, 2015). We organized the 
classification of DTs such that every characteristic is represented by a separate column and assigned 1, if 
the characteristic is observable, and 0 otherwise (H. Gimpel, Rau, & Röglinger, 2018). We then 
standardized the maximum possible distance for each dimension to 1 to ensure an equal weighting of all 
dimensions. While ‘mutually exclusive’ dimensions already fulfilled this requirement, we modified all ‘non-
exclusive’ dimensions as follows: for dimensions with two characteristics, we multiplied the assigned 
binary variable by 0.5 (Bacher, Pöge, & Wenzig, 2010). Due to the lack of a common approach in the 
literature, we then transferred this procedure to ‘non-exclusive’ dimensions with more than two 
characteristics. We therefore multiplied binary variables with the reciprocal of the number of 
characteristics per dimension, e.g., 0.2 for dimensions with five characteristics, again ensuring a 
maximum possible distance of 1 within the respective dimension. For example, for the non-exclusive 
dimension of ‘data treatment’, all five characteristics receive a value of either 0, or 0.2, so that the 
maximum cumulated distance within the dimension is maximum 1. The exclusive dimension of ‘human 
involvement’, in turn, assigns 0 or 1 to its two characteristics. Again, the cumulated distance within the 
dimension is maximum 1, as mutual exclusivity demands that 1 is assigned to exactly one characteristic. 

To conclude the cluster analysis, we determined the ideal number of clusters. Table D1 lists the twelve 
clustering validation indices we considered in order to calculate the appropriate number of clusters when 
deriving purpose-related archetypes. In accordance with our data set and the Ward algorithm, we 
calculated clustering validation indices for hard (i.e. every object is part of exactly one cluster) and internal 
(i.e., information is only used if it is also needed to conduct the cluster analysis) clustering. We also used 
optimization-like (i.e. maximum or minimum value, smallest number of clusters such that the index is 
closest to a significance or critical value) and difference-like (i.e. maximum difference between hierarchy 
levels) validity indices (Vendramin et al., 2010). To select the optimal number of clusters, the indices 
consider either compactness (i.e. intracluster homogenity), separation (i.e. intercluster isolation), or both 
(Halkidi, Vazirgiannis, & Batistakis, 2000). We discuss the values of these clustering validation indices in 
the manuscript. 

    Type of Optimization Measure 

 Reference  Index 
Optimal  

Number of 
Clusters 

Value Optimization Difference Compactness Separation 

 Ball and Hall (1965)  Ball-Hall Index 3 281.4  x x  

 Beale (1969)  Beale Index 9 -41.1 x  x x 

 Calinski and Harabasz (1974)  Calinski-Harabasz (CH) Index 15 2,879.9 x  x x 

 Davies and Bouldin (1979)  Davies-Bouldin (DB) Index 13 0.5 x  x x 

 Duda and Hart (1973)  Duda Index 9 14.7 x  x x 

 Duda and Hart (1973)  Pseudot2 Index 9 -38.4 x  x x 

 Dunn (1974)  Dunn Index 6 0.6 x  x x 

 Halkidi et al. (2000)  SD Index 6 18.5 x  x x 

 Hartigan (1975)  Hartigan Index 5 182.3  x x x 

 Hubert and Levin (1976)  C Index 12 0.2 x  x  

 Krzanowski and Lai (1988)  Krzanowski-Lai Index  2 29.0 x  x  



Communications of the Association for Information Systems 606 

 

  Accepted Manuscript 

 

 McClain and Rao (1975)  McClain-Rao Index 2 0.2 x  x x 

 Milligan (1980, 1981)  Point-biserial Correlation Coefficient 2 0.8 x  x x 

 Ratkowsky and Lance (1978)  Ratkowsky-Lance Index 2 0.4 x   x 

 Rohlf (1974)  Tau Index 9 14,171.2 x  x x 

 Rousseeuw (1987)  Silhouette Index 14 0.8 x  x x 

 

 

    Type of Optimization Measure 

 Reference  Index 

Optimal  

Number of 
Clusters 

Value Optimization Difference Compactness Separation 

 Ball and Hall (1965)  Ball-Hall Index 3 281.4  x x  

 Beale (1969)  Beale Index 9 -41.1 x  x x 

 Calinski and Harabasz (1974)  Calinski-Harabasz (CH) Index 15 2,879.9 x  x x 

 Davies and Bouldin (1979)  Davies-Bouldin (DB) Index 13 0.5 x  x x 

 Duda and Hart (1973)  Duda Index 9 14.7 x  x x 

 Duda and Hart (1973)  Pseudot2 Index 9 -38.4 x  x x 

 Dunn (1974)  Dunn Index 6 0.6 x  x x 

 Halkidi et al. (2000)  SD Index 6 18.5 x  x x 

 Hartigan (1975)  Hartigan Index 5 182.3  x x x 

 Hubert and Levin (1976)  C Index 12 0.2 x  x  

 Krzanowski and Lai (1988)  Krzanowski-Lai Index  2 29.0 x  x  

 McClain and Rao (1975)  McClain-Rao Index 2 0.2 x  x x 

 Milligan (1980, 1981)  Point-biserial Correlation Coefficient 2 0.8 x  x x 

 Ratkowsky and Lance (1978)  Ratkowsky-Lance Index 2 0.4 x   x 

 Rohlf (1974)  Tau Index 9 14,171.2 x  x x 

 Rousseeuw (1987)  Silhouette Index 14 0.8 x  x x 

 

 

 

 

 

 

 



607 What Makes Digital Technology? A Categorization Based on Purpose 

 

  Accepted Manuscript 

 

Appendix E: Classification Results (Taxonomy) 

Table E1 gives an overview of the 92 DTs included in our sample and their classification in terms of 
characteristics and purpose-related archetype. The given numbers in the first column refer to the numbers 
in Appendix A. 

Table E1. Details on the Classification of 92 Digital Technologies 
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Appendix F: Absolute and Relative Hit Ratios 

Our classification results revealed initial insights regarding the taxonomy’s dimensions and characteristics. 
Figure F1 shows an overview of relative and absolute ratios. Starting with the service layer, we found that 
humans actively use the capabilities of DTs in 84% of all cases examined. This finding complies with the 
trend toward interaction and communication technologies such as NLQA (Bouziane, Bouchiha, Doumi, & 
Malki, 2015), which increasingly merge the physical with the digital world. A minority of DTs are hidden 
from users, yet network structures and hardware – e.g. 802.11ax – can support a large number of devices 
or applications. Regarding the content layer, data ‘aggregation’ always appears in combination with the 
comparatively frequent activities data ‘analysis’ (45%) and data ‘transmission’ (68%). The same holds for 
data ‘collection’, which occurs in 48% of all cases, but never as a single activity within this dimension. 
Regarding input and output, 42% of the DTs under investigation feature both ‘digital’ input and output, 
mainly including wireless networks and infrastructures technologies. Further, only 7% feature ‘physical’ 
input and output, e.g. NLQA. The remaining 51% feature hybrid forms of receiving and providing ‘digital’ 
and ‘physical’ data. In the network layer, 78% of the examined DTs enable ‘bi-directional’ interaction 
among the involved entities, which is another indicator of increased connectivity and use of HMIs. In terms 
of the multiplicity dimension, our sample highlights the fact that only 12% of the DTs we investigated 
participate in ‘one-to-many’ and only 10% in ‘many-to-many’ interactions. Again, platform and connectivity 
technologies connect multiple objects. The most common interaction pattern is to be found in a ‘one-to-
one’ (78%) connection. Further, our assessment of the device layer revealed that 67% of the classified 
DTs are application-oriented. This high percentage accounts for the increasing dissemination and 
modularization of services, with DTs no longer tied to the use one specific hardware or device. Further, 
over half the DTs in our sample have a ‘cyber-physical’ focus (58%). The use and further development of 
sensor, actor, and HMI technology might be a possible explanation for this. All in all, we observed a high 
number of interaction and communication features, which are, for the most part, realized through device-
independent services with a focus on ‘bi-directional’ interaction with humans. 

 

Figure F1. Classification Results of 92 Digital Technologies 
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