6,443 research outputs found

    Capillarity Theory for the Fly-Casting Mechanism

    Full text link
    Biomolecular folding and function are often coupled. During molecular recognition events, one of the binding partners may transiently or partially unfold, allowing more rapid access to a binding site. We describe a simple model for this flycasting mechanism based on the capillarity approximation and polymer chain statistics. The model shows that flycasting is most effective when the protein unfolding barrier is small and the part of the chain which extends towards the target is relatively rigid. These features are often seen in known examples of flycasting in protein-DNA binding. Simulations of protein-DNA binding based on well-funneled native-topology models with electrostatic forces confirm the trends of the analytical theory

    Discovery of a stellar companion to the nearby solar-analogue HD 104304

    Full text link
    Sun-like stars are promising candidates to host exoplanets and are often included in exoplanet surveys by radial velocity (RV) and direct imaging. In this paper we report on the detection of a stellar companion to the nearby solar-analogue star HD 104304, which previously was considered to host a planetary mass or brown dwarf companion. We searched for close stellar and substellar companions around extrasolar planet host stars with high angular resolution imaging to characterize planet formation environments. The detection of the stellar companion was achieved by high angular resolution measurements, using the "Lucky Imaging" technique at the ESO NTT 3.5m with the AstraLux Sur instrument. We combined the results with VLT/NACO archive data, where the companion could also be detected. The results were compared to precise RV measurements of HD 104304, obtained at the Lick and Keck observatories from 2001-2010. We confirmed common proper motion of the binary system. A spectral type of M4V of the companion and a mass of 0.21 M_Sun was derived. Due to comparison of the data with RV measurements of the unconfirmed planet candidate listed in the Extrasolar Planets Encyclopaedia, we suggest that the discovered companion is the origin of the RV trend and that the inclination of the orbit of approximately 35 degrees explains the relatively small RV signal.Comment: 4 pages, 4 PNG figures, use aa.cls, accepted for publication in Astronomy & Astrophysic

    Entropy Projection Curved Gabor with Random Forest and SVM for Face Recognition

    Get PDF
    In this work, we propose a workflow for face recognition under occlusion using the entropy projection from the curved Gabor filter, and create a representative and compact features vector that describes a face. Despite the reduced vector obtained by the entropy projection, it still presents opportunity for further dimensionality reduction. Therefore, we use a Random Forest classifier as an attribute selector, providing a 97% reduction of the original vector while keeping suitable accuracy. A set of experiments using three public image databases: AR Face, Extended Yale B with occlusion and FERET illustrates the proposed methodology, evaluated using the SVM classifier. The results obtained in the experiments show promising results when compared to the available approaches in the literature, obtaining 98.05% accuracy for the complete AR Face, 97.26% for FERET and 81.66% with Yale with 50% occlusion

    Protostars and Outflows in the NGC7538 - IRS9 Cloud Core

    Full text link
    New high resolution observations of HCO+ J=1-0, H13CN J=1-0, SO 2,2 - 1,1, and continuum with BIMA at 3.4 mm show that the NGC7538 - IRS9 cloud core is a site of active ongoing star formation. Our observations reveal at least three young bipolar molecular outflows, all ~ 10,000 -- 20,000 years old. IRS9 drives a bipolar, extreme high velocity outflow observed nearly pole on. South of IRS9 we find a cold, protostellar condensation with a size of ~ 14" x 6" with a mass > 250 Msun. This is the center of one of the outflows and shows deep, red-shifted self absorption in HCO+, suggesting that there is a protostar embedded in the core, still in a phase of active accretion. This source is not detected in the far infrared, suggesting that the luminosity < 10^4 Lsun; yet the mass of the outflow is ~ 60 Msun. The red-shifted HCO+ self-absorption profiles observed toward the southern protostar and IRS9 predict accretion rates of a few times 10^-4 to 10^-3 Msun/yr. Deep VLA continuum observations at 3.6 cm show that IRS9 coincides with a faint thermal VLA source, but no other young star in the IRS9 region has any detectable free-free emission at a level of ~ 60 microJy at 3.6 cm. The HCO+ abundance is significantly enhanced in the hot IRS9 outflow. A direct comparison of mass estimates from HCO+ and CO for the well-characterized red-shifted IRS9 outflow predicts an HCO+ enhancement of more than a factor of 30, or [HCO+/H2] >= 6 10^-8.Comment: 40 pages, 3 tables and 10 figures included; to appear in Ap

    ISO Spectroscopy of Young Stellar Objects

    Get PDF
    Observations of gas-phase and solid-state species toward young stellar objects (YSOs) with the spectrometers on board the Infrared Space Observatory are reviewed. The excitation and abundances of the atoms and molecules are sensitive to the changing physical conditions during star-formation. In the cold outer envelopes around YSOs, interstellar ices contain a significant fraction of the heavy element abundances, in particular oxygen. Different ice phases can be distinguished, and evidence is found for heating and segregation of the ices in more evolved objects. The inner warm envelopes around YSOs are probed through absorption and emission of gas-phase molecules, including CO, CO_2, CH_4 and H_2O. An overview of the wealth of observations on gas-phase H_2O in star-forming regions is presented. Gas/solid ratios are determined, which provide information on the importance of gas-grain chemistry and high temperature gas-phase reactions. The line ratios of molecules such as H_2, CO and H_2O are powerful probes to constrain the physical parameters of the gas. Together with atomic and ionic lines such as [0 I] 63 µm, [S I] 25 µm and (Si II] 35 µm, they can also be used to distinguish between photon- and shock-heated gas. Finally, spectroscopic data on circumstellar disks around young stars are mentioned. The results are discussed in the context of the physical and chemical evolution of YSOs

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Meson-induced correlations of nucleons in nuclear Compton scattering

    Get PDF
    The non-resonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is dicussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ\kappa ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities.Comment: 15 pages, Latex, epsf.sty, 9 eps figures

    Detection of interstellar CH_3

    Get PDF
    Observations with the Short Wavelength Spectrometer (SWS) onboard the {\it Infrared Space Observatory} (ISO) have led to the first detection of the methyl radical CH3{\rm CH_3} in the interstellar medium. The ν2\nu_2 QQ-branch at 16.5 μ\mum and the RR(0) line at 16.0 μ\mum have been unambiguously detected toward the Galactic center SgrA^*. The analysis of the measured bands gives a column density of (8.0±\pm2.4)×1014\times10^{14} cm2^{-2} and an excitation temperature of (17±2)(17\pm 2) K. Gaseous CO{\rm CO} at a similarly low excitation temperature and C2H2{\rm C_2H_2} are detected for the same line of sight. Using constraints on the H2{\rm H_2} column density obtained from C18O{\rm C^{18}O} and visual extinction, the inferred CH3{\rm CH_3} abundance is (1.3+2.20.7)×108(1.3{{+2.2}\atop{-0.7}}) \times 10^{-8}. The chemically related CH4{\rm CH_4} molecule is not detected, but the pure rotational lines of CH{\rm CH} are seen with the Long Wavelength Spectrometer (LWS). The absolute abundances and the CH3/CH4{\rm CH_3/CH_4} and CH3/CH{\rm CH_3/CH} ratios are inconsistent with published pure gas-phase models of dense clouds. The data require a mix of diffuse and translucent clouds with different densities and extinctions, and/or the development of translucent models in which gas-grain chemistry, freeze-out and reactions of H{\rm H} with polycyclic aromatic hydrocarbons and solid aliphatic material are included.Comment: 2 figures. ApJL, Accepte
    corecore