21 research outputs found
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
Metal nanoparticles for microscopy and spectroscopy
Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In this chapter we introduce the reader to the optical properties of single plasmon particles as well as finite clusters and periodic lattices, and discuss several applications
Probing extreme environments with the Cherenkov Telescope Array
The physics of the non-thermal Universe provides information on the
acceleration mechanisms in extreme environments, such as black holes and
relativistic jets, neutron stars, supernovae or clusters of galaxies. In the
presence of magnetic fields, particles can be accelerated towards relativistic
energies. As a consequence, radiation along the entire electromagnetic spectrum
can be observed, and extreme environments are also the most likely sources of
multi-messenger emission. The most energetic part of the electromagnetic
spectrum corresponds to the very-high-energy (VHE, E>100 GeV) gamma-ray regime,
which can be extensively studied with ground based Imaging Atmospheric
Cherenkov Telescopes (IACTs). The results obtained by the current generation of
IACTs, such as H.E.S.S., MAGIC, and VERITAS, demonstrate the crucial importance
of the VHE band in understanding the non-thermal emission of extreme
environments in our Universe. In some objects, the energy output in gamma rays
can even outshine the rest of the broadband spectrum. The Cherenkov Telescope
Array (CTA) is the next generation of IACTs, which, with cutting edge
technology and a strategic configuration of ~100 telescopes distributed in two
observing sites, in the northern and southern hemispheres, will reach better
sensitivity, angular and energy resolution, and broader energy coverage than
currently operational IACTs. With CTA we can probe the most extreme
environments and considerably boost our knowledge of the non-thermal Universe.Comment: Submitted as input to ASTRONET Science Vision and Infrastructure
roadmap on behalf of the CTA consortiu