142 research outputs found

    On chains in HH-closed topological pospaces

    Full text link
    We study chains in an HH-closed topological partially ordered space. We give sufficient conditions for a maximal chain LL in an HH-closed topological partially ordered space such that LL contains a maximal (minimal) element. Also we give sufficient conditions for a linearly ordered topological partially ordered space to be HH-closed. We prove that any HH-closed topological semilattice contains a zero. We show that a linearly ordered HH-closed topological semilattice is an HH-closed topological pospace and show that in the general case this is not true. We construct an example an HH-closed topological pospace with a non-HH-closed maximal chain and give sufficient conditions that a maximal chain of an HH-closed topological pospace is an HH-closed topological pospace.Comment: We have rewritten and substantially expanded the manuscrip

    Tunable energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration

    Get PDF
    A wide variety of coupled harmonic oscillators exist in nature1. Coupling between different oscillators allows for the possibility of mutual energy transfer between them2-4 and the information-signal propagation5,6. Low-energy input signals and their transport with low-energy dissipation are the key technical factors in the design of information processing devices7. Here, utilizing the concept of coupled oscillators, we experimentally demonstrated a robust new mechanism for energy transfer between spatially separated dipolar-coupled magnetic disks - stimulated vortex gyration. Direct experimental evidence was obtained by time-resolved soft X-ray microscopy. The rate of energy transfer from one disk to the other was deduced from the two normal modes' frequency splitting caused by dipolar interaction. This mechanism provides the advantages of tunable energy transfer rate, low-power input signal, and low-energy dissipation for magnetic elements with negligible damping. Coupled vortex-state disks are promising candidates for information-signal processing devices that operate above room temperature

    Sexual selection and mating system in Zorotypus gurneyi Choe (Insecta : Zoraptera)

    Full text link
    Social behavior of a species in the little-known insect order Zoraptera is described for the first time. Zorotypus gurneyi Choe (Insecta: Zoraptera) is a wing-dimorphic species that lives colonially under the bark of rotting logs in central Panama. Males are larger than females in total body size and fight each other to gain access to females. Highly linear and stable dominance hierarchies exist among males. Higher-ranking males show such agonistic behavior as jerking, chasing, head-butting, hindleg-kicking, and grappling, whereas subordinates often try to avoid contacts. Higher-ranking males, the dominant males in particular, are well recognized by others and relatively free of injuries. Although the dominant males are often the largest, the correlation between body size and dominance rank is not always significant. The mating system of Z. gurneyi is an example of female defense polygyny in which the dominant males obtain the majority of matings (75% on average). Mating success among Z. gurneyi males is much more variable than that of some lekking species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46900/1/265_2004_Article_BF00164179.pd

    Sexual selection and mating system in Zorotypus gurneyi Choe (Insecta: Zoraptera)

    Full text link
    Body size is clearly an important factor influencing the outcome of agonistic contests, but is often weakly correlated with dominance ranks in Zorotypus gurneyi Choe (Insecta: Zoraptera). The study of the development and dynamics of dominance relations using artificially constructed colonies show that age, or tenure within the colony, is the prime determinant of dominance among males. Dominance hierarchies become relatively stable within 2 or 3 days and males that emerge later normally begin at the bottom of the hierarchy regardless of size. Males interact much more frequently when they are simultaneously introduced to each other than when they are allowed to emerge at different times. In the latter case, males that emerge late appear to recognize relative dominance of older males and avoid direct contests. Considering the high correlation between dominance rank and mating success, there is a strong selective advantage to males that emerge earlier and such pressure of sexual selection may be responsible for the difference in life history strategies between Z. gurneyi and its sympatric congener, Z. barberi Gurney, in central Panama.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46901/1/265_2004_Article_BF00183473.pd

    Genetic and Cellular Characterization of Caenorhabditis elegans Mutants Abnormal in the Regulation of Many Phase II Enzymes

    Get PDF
    Background: The phase II detoxification enzymes execute a major protective role against xenobiotics as well as endogenous toxicants. To understand how xenobiotics regulate phase II enzyme expression, acrylamide was selected as a model xenobiotic chemical, as it induces a large number and a variety of phase II enzymes, including numerous glutathione S-transferases (GSTs) in Caenorhabditis elegans. Methodology/Principal Findings: To begin dissecting genetically xenobiotics response pathways (xrep), 24 independent mutants of C. elegans that exhibited abnormal GST expression or regulation against acrylamide were isolated by screening about 3.5610 5 genomes of gst::gfp transgenic strains mutagenized with ethyl methanesulfonate (EMS). Complementation testing assigned the mutants to four different genes, named xrep-1,-2,-3, and-4. One of the genes, xrep-1, encodes WDR-23, a nematode homologue of WD repeat-containing protein WDR23. Loss-of-function mutations in xrep-1 mutants resulted in constitutive expression of many GSTs and other phase II enzymes in the absence of acrylamide, and the wild-type xrep-1 allele carried on a DNA construct successfully cured the mutant phenotype of the constitutive enzyme expression. Conclusions/Significance: Genetic and cellular characterization of xrep-1 mutants suggest that a large number of GSTs and other phase II enzymes induced by acrylamide are under negative regulation by XREP-1 (WDR-23), which is likely to be a functional equivalent of mammalian Keap1 and a regulator of SKN-1, a C. elegans analogue of cap-n-collar Nrf2 (nuclea

    Role of structural dynamics at the receptor G protein interface for signal transduction

    Get PDF
    GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket

    Allyl Isothiocyanate that Induces GST and UGT Expression Confers Oxidative Stress Resistance on C. elegans, as Demonstrated by Nematode Biosensor

    Get PDF
    Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs), which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC.We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits

    SmCL3, a Gastrodermal Cysteine Protease of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Parasitic infection caused by blood flukes of the genus Schistosoma is a major global health problem. More than 200 million people are infected. Identifying and characterizing the constituent enzymes of the parasite's biochemical pathways should reveal opportunities for developing new therapies (i.e., vaccines, drugs). Schistosomes feed on host blood, and a number of proteolytic enzymes (proteases) contribute to this process. We have identified and characterized a new protease, SmCL3 (for Schistosoma mansoni cathepsin L3), that is found within the gut tissue of the parasite. We have employed various biochemical and molecular biological methods and sequence similarity analyses to characterize SmCL3 and obtain insights into its possible functions in the parasite, as well as its evolutionary position among cathepsin L proteases in general. SmCL3 hydrolyzes major host blood proteins (serum albumin and hemoglobin) and is expressed in parasite life stages infecting the mammalian host. Enzyme substrate specificity detected by positional scanning-synthetic combinatorial library was confirmed by molecular modeling. A sequence analysis placed SmCL3 to the cluster of other cathepsins L in accordance with previous phylogenetic analyses

    The Whereabouts of 2D Gels in Quantitative Proteomics

    Get PDF
    Two-dimensional gel electrophoresis has been instrumental in the development of proteomics. Although it is no longer the exclusive scheme used for proteomics, its unique features make it a still highly valuable tool, especially when multiple quantitative comparisons of samples must be made, and even for large samples series. However, quantitative proteomics using 2D gels is critically dependent on the performances of the protein detection methods used after the electrophoretic separations. This chapter therefore examines critically the various detection methods (radioactivity, dyes, fluorescence, and silver) as well as the data analysis issues that must be taken into account when quantitative comparative analysis of 2D gels is performed

    Low Dosage of Histone H4 Leads to Growth Defects and Morphological Changes in Candida albicans

    Get PDF
    Chromatin function depends on adequate histone stoichiometry. Alterations in histone dosage affect transcription and chromosome segregation, leading to growth defects and aneuploidies. In the fungal pathogen Candida albicans, aneuploidy formation is associated with antifungal resistance and pathogenesis. Histone modifying enzymes and chromatin remodeling proteins are also required for pathogenesis. However, little is known about the mechanisms that generate aneuploidies or about the epigenetic mechanisms that shape the response of C. albicans to the host environment. Here, we determined the impact of histone H4 deficit in the growth and colony morphology of C. albicans. We found that C. albicans requires at least two of the four alleles that code for histone H4 (HHF1 and HHF22) to grow normally. Strains with only one histone H4 allele show a severe growth defect and unstable colony morphology, and produce faster-growing, morphologically stable suppressors. Segmental or whole chromosomal trisomies that increased wild-type histone H4 copy number were the preferred mechanism of suppression. This is the first study of a core nucleosomal histone in C. albicans, and constitutes the prelude to future, more detailed research on the function of histone H4 in this important fungal pathogen
    corecore