8 research outputs found

    A new practical method to evaluate the Joule-Thomson coefficient for natural gases

    Get PDF
    © 2017, The Author(s). The Joule–Thomson (JT) phenomenon, the study of fluid temperature changes for a given pressure change at constant enthalpy, has great technological and scientific importance for designing, maintenance and prediction of hydrocarbon production. The phenomenon serves vital role in many facets of hydrocarbon production, especially associated with reservoir management such as interpretation of temperature logs of production and injection well, identification of water and gas entry locations in multilayer production scenarios, modelling of thermal response of hydrocarbon reservoirs and prediction of wellbore flowing temperature profile. The purpose of this study is to develop a new method for the evaluation of JT coefficient, as an essential parameter required to account the Joule–Thomson effects while predicting the flowing temperature profile for gas production wells. To do this, a new correction factor, CNM, has been developed through numerical analysis and proposed a practical method to predict CNM which can simplify the prediction of flowing temperature for gas production wells while accounting the Joule–Thomson effect. The developed correlation and methodology were validated through an exhaustive survey which has been conducted with 20 different gas mixture samples. For each sample, the model has been run for a wide range of temperature and pressure conditions, and the model was rigorously verified by comparison of the results estimated throughout the study with the results obtained from HYSYS and Peng–Robinson equation of state. It is observed that model is very simple and robust yet can accurately predict the Joule–Thomson effect

    A multicenter phase III trial comparing irinotecan-gemcitabine (IG) with gemcitabine (G) monotherapy as first-line treatment in patients with locally advanced or metastatic pancreatic cancer

    Get PDF
    Our purpose was to determine the response rate and median and overall survival of gemcitabine as monotherapy versus gemcitabine plus irinotecan in advanced or metastatic pancreatic cancer. Patients with histologically or cytologically confirmed adenocarcinoma who were chemotherapy and radiotherapy naive were enrolled. Patients were centrally randomised at a one-to-one ratio to receive either gemcitabine monotherapy (900 mg m−2 on days 1, 8 and 15 every 4 weeks (arm G), or gemcitabine (days 1 and 8) plus irinotecan (300 mg m−2 on day 8) (arm IG), repeated every 3 weeks. The total number of cycles administered was 255 in the IG arm and 245 in the G arm; the median number of cycles was 3. In all, 145 patients (71 in arm IG and 74 in arm G) were enrolled; 60 and 70 patients from arms IG and G, respectively, were evaluable. A complete clinical response was achieved in three (4.3%) arm G patients; nine (15%) patients in arm IG and four (5.7%) in arm G achieved a partial response. The overall response rate was: arm IG 15% and arm G 10% (95% CI 5.96–24.04 and 95% CI 2.97–17.03, respectively; P=0.387). The median time to tumour progression was 2.8 months and 2.9 months and median survival time was 6.4 and 6.5 months for the IG and G arms, respectively. One-year survival was 24.3% for the IG arm and 21.8% for the G arm. No statistically significant difference was observed comparing gemcitabine monotherapy versus gemcitabine plus irinotecan in the treatment of advanced pancreatic cancer, with respect to overall and 1-year survival

    Animal Models for Retinal Degeneration

    No full text

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore