3,025 research outputs found

    Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.

    Get PDF
    Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli

    Hookworm Infection and Environmental Factors in Mbeya Region, Tanzania: A Cross-sectional, Population-based study.

    Get PDF
    Hookworm disease is one of the most common infections and cause of a high disease burden in the tropics and subtropics. Remotely sensed ecological data and model-based geostatistics have been used recently to identify areas in need for hookworm control. Cross-sectional interview data and stool samples from 6,375 participants from nine different sites in Mbeya region, south-western Tanzania, were collected as part of a cohort study. Hookworm infection was assessed by microscopy of duplicate Kato-Katz thick smears from one stool sample from each participant. A geographic information system was used to obtain remotely sensed environmental data such as land surface temperature (LST), vegetation cover, rainfall, and elevation, and combine them with hookworm infection data and with socio-demographic and behavioral data. Uni- and multivariable logistic regression was performed on sites separately and on the pooled dataset. Univariable analyses yielded significant associations for all ecological variables. Five ecological variables stayed significant in the final multivariable model: population density (odds ratio (OR) = 0.68; 95% confidence interval (CI) = 0.63-0.73), mean annual vegetation density (OR = 0.11; 95% CI = 0.06-0.18), mean annual LST during the day (OR = 0.81; 95% CI = 0.75-0.88), mean annual LST during the night (OR = 1.54; 95% CI = 1.44-1.64), and latrine coverage in household surroundings (OR = 1.02; 95% CI = 1.01-1.04). Interaction terms revealed substantial differences in associations of hookworm infection with population density, mean annual enhanced vegetation index, and latrine coverage between the two sites with the highest prevalence of infection. This study supports previous findings that remotely sensed data such as vegetation indices, LST, and elevation are strongly associated with hookworm prevalence. However, the results indicate that the influence of environmental conditions can differ substantially within a relatively small geographic area. The use of large-scale associations as a predictive tool on smaller scales is therefore problematic and should be handled with care

    MIR376A is a regulator of starvation-induced autophagy

    Get PDF
    Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration. Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR. Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role. Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy

    Body composition and body fat distribution are related to cardiac autonomic control in non-alcoholic fatty liver disease patients

    Get PDF
    BACKGROUND/OBJECTIVES: Heart rate recovery (HRR), a cardiac autonomic control marker, was shown to be related to body composition (BC), yet this was not tested in non-alcoholic fatty liver disease (NAFLD) patients. The aim of this study was to determine if, and to what extent, markers of BC and body fat (BF) distribution are related to cardiac autonomic control in NAFLD patients. SUBJECTS/METHODS: BC was assessed with dual-energy X-ray absorptiometry in 28 NAFLD patients (19 men, 51±13 years, and 9 women, 47±13 years). BF depots ratios were calculated to assess BF distribution. Subjects’ HRR was recorded 1 (HRR1) and 2 min (HRR2) immediately after a maximum graded exercise test. RESULTS: BC and BF distribution were related to HRR; particularly weight, trunk BF and trunk BF-to-appendicular BF ratio showed a negative relation with HRR1 (r 1⁄4 0.613, r 1⁄4 0.597 and r 1⁄4 0.547, respectively, Po0.01) and HRR2 (r 1⁄4 0.484, r 1⁄4 0.446, Po0.05, and r 1⁄4 0.590, Po0.01, respectively). Age seems to be related to both HRR1 and HRR2 except when controlled for BF distribution. The preferred model in multiple regression should include trunk BF-to-appendicular BF ratio and BF to predict HRR1 (r2 1⁄4 0.549; Po0.05), and trunk BF-to-appendicular BF ratio alone to predict HRR2 (r2 1⁄4 0.430; Po0.001). CONCLUSIONS: BC and BF distribution were related to HRR in NAFLD patients. Trunk BF-to-appendicular BF ratio was the best independent predictor of HRR and therefore may be best related to cardiovascular increased risk, and possibly act as a mediator in age-related cardiac autonomic control variation.info:eu-repo/semantics/publishedVersio

    Ameloblastic neoplasia spectrum : a cross-sectional study of MMPS expression and proliferative activity

    Get PDF
    Objective. To compare the proliferation and the expression of matrix metalloproteinases (MMPs; MMP-2 and MMP-9) in solid and unicystic ameloblastomas with ameloblastic carcinomas. Study Design.Five cases of ameloblastic carcinoma (AC), 18 cases of solid ameloblastoma (SA), and seven of unicystic ameloblastoma (UA) were selected. The immunohistochemical expression of MMPs was assessed by the percentage of positive tumor cells and stained stroma. The mean argyrophilic nucleolar organizer region (AgNOR) and the percentage of cells with more than one AgNOR per nucleus were evaluated. Results. Statistically significant higher mean AgNOR was observed in AC than in SA and UA. MMP-2 was expressed similarly in tumor and stroma among groups. MMP-9 was higher in the stroma of SA than that of UA (P = .0484). Conclusions. The cell proliferation was related to the greater aggressiveness of AC. High expression of MMP-2 and MMP-9 in all lesions highlighted the importance of these enzymes in the biology of ameloblastic tumors

    The Cysteine-Rich Protein Thimet Oligopeptidase as a Model of the Structural Requirements for S-glutathiolation and Oxidative Oligomerization

    Get PDF
    Thimet oligopeptidase (EP24.15) is a cysteine-rich metallopeptidase containing fifteen Cys residues and no intra-protein disulfide bonds. Previous work on this enzyme revealed that the oxidative oligomerization of EP24.15 is triggered by S-glutathiolation at physiological GSSG levels (10–50 µM) via a mechanism based on thiol-disulfide exchange. In the present work, our aim was to identify EP24.15 Cys residues that are prone to S-glutathiolation and to determine which structural features in the cysteinyl bulk are responsible for the formation of mixed disulfides through the reaction with GSSG and, in this particular case, the Cys residues within EP24.15 that favor either S-glutathiolation or inter-protein thiol-disulfide exchange. These studies were conducted by in silico structural analyses and simulations as well as site-specific mutation. S-glutathiolation was determined by mass spectrometric analyses and western blotting with anti-glutathione antibody. The results indicated that the stabilization of a thiolate sulfhydryl and the solvent accessibility of the cysteines are necessary for S-thiolation. The Solvent Access Surface analysis of the Cys residues prone to glutathione modification showed that the S-glutathiolated Cys residues are located inside pockets where the sulfur atom comes into contact with the solvent and that the positively charged amino acids are directed toward these Cys residues. The simulation of a covalent glutathione docking onto the same Cys residues allowed for perfect glutathione posing. A mutation of the Arg residue 263 that forms a saline bridge to the Cys residue 175 significantly decreased the overall S-glutathiolation and oligomerization of EP24.15. The present results show for the first time the structural requirements for protein S-glutathiolation by GSSG and are consistent with our previous hypothesis that EP24.15 oligomerization is dependent on the electron transfer from specific protonated Cys residues of one molecule to previously S-glutathionylated Cys residues of another one
    corecore