132 research outputs found

    A comparison of repetitive corrugation and straightening and high-pressure torsion using an Al-Mg-Sc alloy

    Get PDF
    A comparative study was conducted to evaluate the influence of two different severe plastic deformation (SPD) processes: repetitive corrugation and straightening (RCS) and high-pressure torsion (HPT). Samples of an Al-3Mg-0.25Sc alloy with an initial grain size of ∼150 μm were processed by RCS through 8 passes at room temperature either without any rotation during processing or with a rotation of 90° around the longitudinal axis between each pass. Thin discs of the alloy were also processed for up to 5 turns by HPT at room temperature. The results show that both procedures introduce significant grain refinement with average grain sizes of ∼0.6–0.7 μm after RCS and ∼95 nm after HPT. Measurements of the Vickers microhardness gave values of ∼128 after RCS and ∼156 after HPT. The results demonstrate that processing by HPT is the optimum processing technique in achieving both high strength and microstructural homogeneity

    The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion

    Get PDF
    Metal matrix nanocomposites were fabricated by high-pressure torsion (HPT) using 5% graphene nanoplates as a reinforcement contained within an Al matrix. Powders were mixed and compacted at room temperature and then processed by HPT at three different temperatures of 298, 373 and 473 K. After processing, microstructural observations were undertaken to reveal the distributions of graphene in the matrix, the grain refinement in the aluminium and the nature of the graphene-aluminium interfaces. Tests were performed to measure the microhardness, the tensile stress-strain curves and the electrical conductivity. The results show that processing by HPT is advantageous because it avoids the sintering and high temperature deformation associated with other processing routes

    Characterization of an Nmr Homolog That Modulates GATA Factor-Mediated Nitrogen Metabolite Repression in Cryptococcus neoformans

    Get PDF
    Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis

    Transcriptional upregulation of human tissue kallikrein 6 in ovarian cancer: clinical and mechanistic aspects

    Get PDF
    The human tissue kallikrein family (KLK for protein; KLK for gene) includes 15 members. Twelve kallikreins, including KLK6, are concurrently upregulated in ovarian cancer. However, the mechanism of this phenomenon remains unclear. In this study, we measured KLK6 expression in a large series of ovarian tissue cytosols and examined possible mechanisms of KLK6 up-regulation in ovarian cancer. Using a newly developed enzyme-linked immunosorbent assay (ELISA) with two monoclonal antibodies, we quantified KLK6 expression in ovarian tissue cytosols, and confirmed the upregulation of KLK6 in ovarian cancer and its unfavourable prognostic value. We then examined KLK6 mRNA expression using reverse transcription–polymerase chain reaction and established its good concordance with KLK6 protein expression. This finding suggested that the KLK6 gene is under transcriptional regulation. We then scrutinised a few mechanisms that could explain KLK6 upregulation. The relative abundance of two KLK6 mRNA transcripts was studied; we found the same differential expression pattern in all samples, regardless of KLK6 levels. Genomic mutation screening of all exons and the 5′-flanking region of the KLK6 gene identified two linked single-nucleotide polymorphisms in the 5′-untranslated region, but neither correlated with KLK6 expression. Ovarian cell lines were separately treated with five steroid hormones. None of the treatments produced significant effects on KLK6 expression. We conclude that KLK6 is transcriptionally upregulated in ovarian cancer, but probably not through alternative mRNA transcript expression, genomic mutation, or steroid hormone induction

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Creep cavitation and fracture in polycrystalline copper

    No full text
    No Abstract. Journal of the Ghana Science Association Vol. 2 (2) 1999: pp.57-6
    corecore