21 research outputs found
Recommended from our members
Feral cats and biodiversity conservation: The urgent prioritization of island management
A great part of the Earth's biodiversity occurs on islands, to which humans have brought a legion of invasive species that have caused population declines and even extinctions. The domestic cat is one of the most damaging species introduced to islands, being a primary extinction driver for at least 33 insular endemic vertebrates. Here, we examine the role of feral cats in the context of the island biodiversity crisis, by combining data from reviews of trophic studies, species conservation status reports, and eradication campaigns. The integration of these reviews permits us to identify priority islands where feral cat eradications are likely to be feasible and where cats are predicted to cause the next vertebrate extinctions. Funding agencies and global conservation organizations can use these results to prioritize scarce conservation funds, and national and regional natural resource management agencies can rank their islands in need of feral cat eradication within a global context. © 2013 by American Institute of Biological Sciences. All rights reserved
Recommended from our members
Passive Recovery of Vegetation after Herbivore Eradication on Santa Cruz Island, California
Understanding how insular ecosystems recover or are restructured after the eradication of an invasive species is crucial in evaluating conservation success and prioritizing island conservation efforts. Globally, herbivores have been removed from 762 islands, most with limited active restoration actions following eradication. Few studies have documented the effects of invasive herbivore removal after multiple decades of passive recovery. Here we evaluate recovery of vegetation on Santa Cruz Island, California, after the removal of feral sheep (Ovis aries) in 1984. We repeat a study conducted in 1980, and examine vegetation changes 28 years after the eradication. Before eradication, grazed areas were characterized by reduced plant cover, high exposure of bare ground, and erosion. After 28 years of passive recovery, transect data showed a 23% increase in woody overstory, whereas analysis of photographs from landscapes photographed pre- and post-eradication showed a 26% increase in woody vegetation. Whole island vegetation maps similarly showed a transition from grass/bare ground (74.3% of cover) to woody plants (77.2% of cover), indicating the transition away from predominantly exotic annual grassland toward a community similar to the overstory of coastal scrubland but with an understory dominated by non-native annual grasses. We estimate that replacement of grasses/bare ground by native woody vegetation has led to 70 and 17% increases in the stored carbon and nitrogen pools on the island, respectively. Our results demonstrate that these island ecosystems can experience significant recovery of native floral communities without intensive post-eradication restoration, and results of recovery may take decades to be realized
Invasive Species Control and Resolution of Wildlife Damage Conflicts: A Framework for Chemical and Genetically Based Management Methods
Vertebrate wildlife damage management relates to developing and employing methods to mitigate against damage caused by wildlife in the areas of food production, property damage, and animal or human health and safety. Of the many management tools available, chemical methods (e.g., toxicants) draw the most attention owing to issues related to environmental burden, species specificity, and humaneness. Research and development focusing on RNA interference and gene drives may be able to address the technical aspects of performance goals. However, there remain many questions about regulation, environmental risk, and societal acceptance for these emerging biological technologies. Here we focus on the development and use of these biological technologies for use in vertebrate pest management and conservation (e.g., management of wildlife diseases). We then discuss the regulatory framework and challenges these technologies present and conclude with a discussion on factors to consider for enabling these technologies for pest management and conservation applications under a commercially applied framework
Data from: Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.): genetic evidence for revision of subspecies
There are three described subspecies of fin whales (Balaenoptera physalus): B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North Pacific and North Atlantic raises the question of whether a single Northern Hemisphere subspecies is valid. We assess phylogenetic patterns using ~16 K base pairs of the complete mitogenome for 154 fin whales from the North Pacific, North Atlantic - including the Mediterranean Sea - and Southern Hemisphere. A Bayesian tree of the resulting 136 haplotypes revealed several well-supported clades representing each ocean basin, with no haplotypes shared among ocean basins. The North Atlantic haplotypes (n = 12) form a sister clade to those from the Southern Hemisphere (n = 42). The estimated time to most recent common ancestor (TMRCA) for this Atlantic/Southern Hemisphere clade and 81 of the 97 samples from the North Pacific was approximately 2 Ma. 14 of the remaining North Pacific samples formed a well-supported clade within the Southern Hemisphere. The TMRCA for this node suggests that at least one female from the Southern Hemisphere immigrated to the North Pacific approximately 0.37 Ma. These results provide strong evidence that North Pacific and North Atlantic fin whales should not be considered the same subspecies, and suggest the need for revision of the global taxonomy of the species. There were a total of 103 CR haplotypes in the Sanger-sequenced data set (Table 1). Haplotypic diversity was high both within ocean basins as well as across all samples. The minimum diversity within an ocean basin was 0.828 for the North Atlantic, which also had the fewest samples. There were no shared haplotypes among ocean basins. There were two fixed differences between the North Atlantic and North Pacific (sites 181 and 198), and one between the North Atlantic and Southern Hemisphere sequences (site 198)