178 research outputs found

    Nondestructive characterization of Antarctic micrometeorites collected at the Dome Fuji Station by synchrotron radiation X-ray fluorescence analysis

    Get PDF
    The bulk trace element composition (Ca, Ti, Cr, Mn, Ni Cu, Zn, Ge, Se, Rb, Sr, Y, Zr, Mo) of eighty-three Antarctic micrometeorites was nondestructively analyzed using synchrotron radiation X-ray fluorescence analysis (SR-XRF), and these elements were characterized in terms of their abundance ratio relative to Murchison matrix composition. The relationship between heating history and chemical composition is also examined. We found a complementary relationship among I-type, S-type and unmelted AMMs in the micrometeorites\u27 elemental abundance, which is consistent with the hypothesis that I-type and S-type spherules were separated from chondritic meteoroids

    Gene Expression and Localization of High-mobility Group Box Chromosomal Protein-1 (HMGB-1) in Human Osteoarthritic Cartilage

    Get PDF
    We investigated the expression and localization of high-mobility group box chromosomal protein-1 (HMGB-1) in human osteoarthritic (OA) cartilage in relation to the histopathological grade of cartilage destruction, and examined the role of HMGB-1 in the regulation of proinflammatory cytokine expression in chondrocytes. An immunohistochemical study demonstrated that total HMGB-1-positive cell ratios increase as the Osteoarthritis Research Society International (OARSI) histological grade increased. The population of cytoplasmic HMGB-1-positive chondrocytes was especially increased in the deep layers of higher-grade cartilage. The ratios and localization of receptors for advanced glycation end products (RAGE) expression by chondrocytes in Grade 2, 3, and 4 were significantly higher than those in Grade 1. In vitro stimulation with IL-1Ī², but not TNFĪ±, significantly upregulated the expression of HMGB-1 mRNA by human OA chondrocytes. Both IL-1Ī² and TNFĪ± promoted the translocation of HMGB-1 from nuclei to cytoplasm. IL-1Ī² and TNFĪ± secretions were stimulated at higher levels of HMGB-1. The results of our study suggest the involvement of HMGB-1 in the pathogenesis of cartilage destruction in OA

    Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    Get PDF
    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8

    Investigation of cathodic reaction in SOFCs and PCFCs by using patterned thin film model electrodes

    Get PDF
    In recent years, fuel cells operating at relatively high temperatures, such as solid oxide fuel cells (SOFCs) using an oxide ion conducting electrolyte and proton ceramics fuel cells (PCFCs) using an proton conducting electrolyte, attract attentions as high-efficient energy-conversion devices. For further enhancements of the performance and the durability of SCFCs and PCFCs, it is essential to understand the electrode reactions. In particular, the knowledge on the dominant reaction path in the electrodes would help us to optimize the material and the microstructure of the electrode. Please click Additional Files below to see the full abstract

    An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure

    Get PDF
    AbstractSQUAMOSA promoter-binding proteins (SBPs) form a major family of plant-specific transcription factors, mainly related to flower development. SBPs share a highly conserved DNA-binding domain of āˆ¼80 amino acids (SBP domain), which contains two non-interleaved zinc-binding sites formed by eight conserved Cys or His residues. In the present study, an Arabidopsis SPL12 SBP-domain fragment that lacks a Cys residue involved in the C-terminal zinc-binding pocket was found to retain a folded structure, even though only a single Zn2+ ion binds to the fragment. Solution structure of this fragment determined by NMR is very similar to the previously determined structures of the full SBP domains of Arabidopsis SPL4 and SPL7. Considering the previous observations that chelating all the Zn2+ ions of SBPs resulted in the complete unfolding of the structure and that a mutation of the Cys residue equivalent to that described above impaired the DNA-binding activity, we propose that the Zn2+ ion at the N-terminal site is necessary to maintain the overall tertiary structure, while the Zn2+ ion at the C-terminal site is necessary for the DNA binding, mainly by guiding the basic C-terminal loop to correctly fit into the DNA groove

    Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

    Get PDF
    Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ā€˜Koshihikariā€™ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected

    The influence of ageing on the stabilisation of interfacial (Cu,Ni)6(Sn,Zn)5 and (Cu,Au,Ni)6Sn5 intermetallics in Pb-free Ball Grid Array (BGA) solder joints

    Get PDF
    Formation/growth behaviour, phase stability, and mechanical properties of interfacial CuSn intermetallics influenced by micro-alloying in Pb-free solder joints, are of ongoing interest as this phase is crucial to the service reliability of solder joints. Our recent work has demonstrated that, after reflow, the homogeneously located micro-alloying elements of both Ni and Zn in interfacial (Cu,Ni)(Sn,Zn) act to increase phase stability and prevent the undesirable polymorphic phase transformation of CuSn. This paper further investigates the influence of ageing on the phase stability of interfacial intermetallics containing Ni, Zn and Au. Phase transformations of hexagonal to monoclinic CuSn driven by ageing, was suppressed by alloying Ni/Zn/Au, resulting in improvements in phase stability. The findings help to further understand the reliability of interfacial structures in micro-alloyed Pb-free solder joints
    • ā€¦
    corecore