9 research outputs found
Structural, Vibrational and Electrochemical Analysis and Antibacterial Potential of Isomeric Chalcones Derived from Natural Acetophenone
Background: Chalcones are part of a family of small phenolic compounds that are being extensively studied for presenting a diversity of molecular structures and biological activities. In this paper, two chalcones, (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (1), (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (2), were synthesized by Claisen–Schmidt condensation. Methods: The molecular structures of these chalcones were determined by Nuclear Magnetic Resonance and characterized by infrared, Raman spectroscopy, and electrochemical analysis at room temperature. Vibrational wavenumbers were predicted using Functional Density Theory (DFT) calculations, and their normal modes were analyzed in terms of potential energy distribution (PED). Besides this, DFT calculations were performed to obtain the molecular orbitals and their quantum descriptors. The UV-Vis absorption spectrum of the synthesized chalcones was measured and compared with each other. In addition, analyses of antimicrobial activity and modulation of antibiotic resistance were carried out to assess the antibacterial potential of these chalcones. Results: The vibrational spectra of polycrystalline chalcones obtained by ATR-FTIR, FT-Raman and DFT calculations allowed a complete assignment of the vibrational modes, and revealed the quantum chemical parameters. Both chalcones did not show good responses when associated with the antibiotics Ciprofloxacin and Cephalexin against S. aureus 10 and E. coli 06 strains. However, a significant potentiating of the Gentamicin activity against S. aureus 10 and E. col 06 strains was observed for chalcone 2. On the other hand, when associated with Norfloxacin, an antagonistic effect was observed. The results found for EtBr suggest that, although the tested chalcones behave as efflux pump inhibitors, probably inhibiting other efflux pumps, they were not able to inhibit NorA. Thus, these synthetic chalcones are not recommended for use in association with Norfloxacin against strains of S. aureus 1199-B that overexpress the NorA gene. Conclusions: Spectroscopic data confirmed the structure of the chalcones, and chalcone 2 showed potential as an adjuvant in antibiotic therapy
Paradoxical role of matrix metalloproteinases in liver injury and regeneration after sterile acute hepatic failure
Acetaminophen (APAP) poisoning is one of the leading causes of acute hepatic failure and liver transplantation is often the only lifesaving alternative. During the course of hepatocyte
necrosis, an intense accumulation of neutrophils is often observed within the liver microenvironment. Despite the classic idea that neutrophil accumulation in tissues causes collateral tissue damage, there is a growing body of evidence showing that neutrophils can also orchestrate the resolution of inflammation. In this work, drug-induced liver injury was induced by oral administration of APAP and pharmacological intervention was made 12 h after this challenge. Liver injury and repair kinetics were evaluated by a novel combination of enzyme quantifications, ELISA, specific antagonists of neutrophil enzymes and confocal intravital microscopy. We have demonstrated that neutrophil infiltration is not only involved in injury amplification, but also in liver tissue repair after
APAP-induced liver injury. In fact, while neutrophil depletion led to reduced hepatic necrosis during APAP poisoning, injury recovery was also delayed in neutropenic mice. The mechanisms underlying the neutrophil reparative role involved rapid degranulation and matrix metalloproteinases (MMPs)
activity. Our data highlights the crucial role of neutrophils, in particular for MMPs, in the resolution phase of APAP-induced inflammatory response
Paradoxical Role of Matrix Metalloproteinases in Liver Injury and Regeneration after Sterile Acute Hepatic Failure
Acetaminophen (APAP) poisoning is one of the leading causes of acute hepatic failure and liver transplantation is often the only lifesaving alternative. During the course of hepatocyte necrosis, an intense accumulation of neutrophils is often observed within the liver microenvironment. Despite the classic idea that neutrophil accumulation in tissues causes collateral tissue damage, there is a growing body of evidence showing that neutrophils can also orchestrate the resolution of inflammation. In this work, drug-induced liver injury was induced by oral administration of APAP and pharmacological intervention was made 12 h after this challenge. Liver injury and repair kinetics were evaluated by a novel combination of enzyme quantifications, ELISA, specific antagonists of neutrophil enzymes and confocal intravital microscopy. We have demonstrated that neutrophil infiltration is not only involved in injury amplification, but also in liver tissue repair after APAP-induced liver injury. In fact, while neutrophil depletion led to reduced hepatic necrosis during APAP poisoning, injury recovery was also delayed in neutropenic mice. The mechanisms underlying the neutrophil reparative role involved rapid degranulation and matrix metalloproteinases (MMPs) activity. Our data highlights the crucial role of neutrophils, in particular for MMPs, in the resolution phase of APAP-induced inflammatory response.status: publishe
NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics
Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data