15 research outputs found

    Stoichiometry of HLA Class II-Invariant Chain Oligomers

    Get PDF
    BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and ÎČ subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αÎČ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    Precipitation and Evaporation Budgets over the Baltic Proper: Observations and Modelling

    No full text
    Precipitation and evaporation budgets over the Baltic Sea were studied in a concerted project called PEP in BALTEX (Pilot study of Evaporation and Precipitation in the Baltic Sea), combining extensive field measurements and modelling efforts. Eddy-correlation-measurements of turbulent heat flux were made on a semi-continuous basis for a 12 month period at four well-exposed coastal sites in the Baltic Proper (the main basin of the Baltic Sea). Precipitation was measured at land-based sites with standard gauges and on four merchant ships travelling between Germany and Finland with the aid of specially designed ship rain gauges (SRGs). The evaporation and precipitation regime of the Baltic Sea was modelled for a 12 month period by applying a wide range of numerical models: the operational atmospheric High Resolution Limited Area Model (HIRLAM, Swedish and Finnish versions), the German atmospheric REgional-scale MOdel, REMO, the operational German Europe Model (only precipitation), the oceanographic model PROBE-Baltic, and two models that use interpolation of ground-based data, the Swedish MESAN model of SMHI and a German model of IFM-GEOMAR Kiel. Modelled precipitation was compared with SRG measurements on board the ships. A reasonable correlation was obtained, but the regional-scale models and MESAN gave some 20% higher precipitation over the sea than is measured. Bulk parameterisation schemes for evaporation were evaluated against measurements. A constant value of C HN and C EN with wind speed, underestimated large fluxes of both sensible and latent heat flux. The limited area models do not resolve the influence of the height of the marine boundary layer in coastal zones and the entrainment (on the surface fluxes), which may explain the observed low correlations between modelled and measured latent heat fluxes. Estimates of evaporation, E, and precipitation, P, for the entire Baltic Proper were made with several models for a 12 month period. While the annual variation was well represented by all predictions, there are still important differences in the annual means. Evaporation ranges from 509 to 625 mm year−1 and precipitation between 624 and 805 mm year−1 for this particular 12 month period. Taking the results of model verification from the present study into account, the best estimate of P–E is about 100 ± 50 mm for this particular 12 month period. But the annual mean of P–E varies considerably from year to year. This is reflected in simulations with the PROBE-Baltic model for an 18 year period, which gave 95 mm year−1 for the 12 month period studied here and 32 mm year−1 as an average for 18 years

    Tidal mixing in the Indonesian Seas and its effect on the tropical climate system

    No full text
    International audienceThe sensitivity of the tropical climate to tidal mixing in the Indonesian Archipelago (IA) is investigated using a coupled general circulation model. It is shown that the introduction of tidal mixing considerably improves water masses properties in the IA, generating fresh and cold anomalies in the thermocline and salty and cold anomalies at the surface. The subsurface fresh anomalies are advected in the Indian Ocean thermocline and ultimately surface to freshen the western part of the basin whereas surface salty anomalies are advected in the Leuwin current to salt waters along the Australian coast. The ~0.5°C surface cooling in the IA reduces by 20% the overlying deep convection. This improves both the amount and structure of the rainfall and weakens the wind convergence over the IA, relaxes the equatorial Pacific trade winds and strengthens the winds along Java coast. These wind changes causes the thermocline to be deeper in the eastern equatorial Pacific and shallower in the eastern Indian Ocean. The El Nino Southern Oscillation (ENSO) amplitude is therefore slightly reduced while the Indian Ocean Dipole/Zonal Mode (IODZM) variability increases. IODZM precursors, related to ENSO events the preceding winter in this model, are also shown to be more efficient in promoting an IODZM thanks to an enhanced wind/thermocline coupling. Changes in the coupled system in response tidal mixing are as large as those found when closing the Indonesian Throughflow, emphasizing the key role of IA on the Indo-Pacific climate
    corecore