93 research outputs found

    The effect of high-intensity aerobic interval training on markers of systemic inflammation in sedentary populations

    Full text link
    © 2017, Springer-Verlag Berlin Heidelberg. Purpose: This study examined the effects of high-intensity interval training (HIIT; 30 s sprint, 4–5 min passive recovery) and prolonged intermittent sprint training (PIST; 10 s sprint, 2–3 min moderate exercise) on the systemic inflammatory markers C-reactive protein (CRP) and tumor necrosis factor-α (TNF-α), aerobic capacity, and anthropometry in a middle-aged, sedentary population. Methods: Fifty-five sedentary adults (age 49.2 ± 6.1 years) were randomised into HIIT (n = 20), PIST (n = 21), or a sedentary control group (CTRL n = 14). HIIT and PIST performed three training sessions per week for 9 weeks on a cycle ergometer, matched for total high-intensity time, while CTRL continued normal sedentary behaviours. Pre- and post-intervention testing involved measures of anthropometry, peak oxygen consumption (VO2peak), and venous blood collection for analyses of CRP and TNF-α. Results: HIIT and PIST increased VO2peak compared to CTRL (+3.66 ± 2.23 and 3.74 ± 2.62 mL kg min−1). A group × time interaction (p = 0.042) and main effect of time (p = 0.026) were evident for waist girth, with only HIIT showing a significant reduction compared to CTRL (−2.1 ± 2.8 cm). TNF-α and CRP showed no group × time interaction or time effect (p > 0.05). Conclusions: In sedentary individuals, 9 weeks of HIIT or PIST were effective to improve aerobic capacity; however, only HIIT significantly reduced waist girth and WHR compared to CTRL. Markers of systemic inflammation remained unchanged across all groups. Accordingly, for inflammation and VO2peak, the distribution of sprints and the active or passive recovery periods are inconsequential provided that total duration of high-intensity efforts is similar

    Urinary C-Peptide of Insulin as a Non-Invasive Marker of Nutritional Status: Some Practicalities

    Get PDF
    Nutritional status is a critical element of many aspects of animal ecology, but has proven difficult to measure non-invasively in studies of free-ranging animals. Urinary C-peptide of insulin (UCP), a small polypeptide cleaved in an equimolar ratio from proinsulin when the body converts it to insulin, offers great promise in this regard, and recent studies of several non-human primate species have utilized it with encouraging results. Despite this, there are a number of unresolved issues related to the collection, processing, storage and transport of samples. These include: contamination of samples on collection (most commonly by dirt or faeces), short-term storage before returning to a field station, differences in processing and long-term storage methods (blotting onto filter paper, freezing, lyophilizing), and for frozen samples, transportation while keeping samples frozen. Such issues have been investigated for urine samples in particular with respect to their effects on steroid hormone metabolites, but there has been little investigation of their effects on UCP measurement. We collected samples from captive macaques, and undertook a series of experiments where we systematically manipulated samples and tested the effects on subsequent UCP measurements. We show that contamination of urine samples by faeces led to a decrease in UCP levels by >90%, but that contamination with dirt did not have substantial effects. Short-term storage (up to 12 hours) of samples on ice did not affect UCP levels significantly, but medium-term storage (up to 78 hours) did. Freezing and lyophilization for long-term storage did not affect UCP levels, but blotting onto filter paper did. A transportation simulation showed that transporting frozen samples packed in ice and insulated should be acceptable, but only if it can be completed within a period of a few days and if freeze-thaw can be avoided. We use our data to make practical recommendations for fieldworkers

    Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella)

    Get PDF
    Analysis of fecal glucocorticoid (GC) metabolites has recently become the standard method to monitor adrenocortical activity in primates noninvasively. However, given variation in the production, metabolism, and excretion of GCs across species and even between sexes, there are no standard methods that are universally applicable. In particular, it is important to validate assays intended to measure GC production, test extraction and storage procedures, and consider the time course of GC metabolite excretion relative to the production and circulation of the native hormones. This study examines these four methodological aspects of fecal GC metabolite analysis in tufted capuchins (Cebus apella). Specifically, we conducted an adrenocorticotrophic hormone (ACTH) challenge on one male and one female capuchin to test the validity of four GC enzyme immunoassays (EIAs) and document the time course characterizing GC me- tabolite excretion in this species. In addition, we compare a common field-friendly technique for extracting fecal GC metabolites to an established laboratory extraction methodology and test for effects of storing “field extracts” for up to 1 yr. Results suggest that a corticosterone EIA is most sensitive to changes in GC production, provides reliable measures when extracted according to the field method, and measures GC metabolites which remain highly stable after even 12 mo of storage. Further, the time course of GC metabolite excretion is shorter than that described yet for any primate taxa. These results provide guidelines for studies of GCs in tufted capuchins, and underscore the importance of validating methods for fecal hormone analysis for each species of interest

    Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species

    Get PDF
    Caudal autotomy is an anti-predator behaviour that is used by many lizard species. Although there is an immediate survival benefit, the subsequent absence of the tail may inhibit locomotor performance, alter activity and habitat use, and increase the individuals' susceptibility to future predation attempts. We used laboratory experiments to examine the impact of tail autotomy on locomotor performance, activity and basking site selection in two lizard species, the delicate skink (Lampropholis delicata) and garden skink (L. guichenoti), that occur sympatrically throughout southeastern Australia and are exposed to an identical suite of potential predators. Post-autotomy tail movement did not differ between the two Lampropholis species, although a positive relationship between the shed tail length and distance moved, but not the duration of movement, was observed. Tail autotomy resulted in a substantial decrease in sprint speed in both species (28–39%), although this impact was limited to the optimal performance temperature (30°C). Although L. delicata was more active than L. guichenoti, tail autotomy resulted in decreased activity in both species. Sheltered basking sites were preferred over open sites by both Lampropholis species, although this preference was stronger in L. delicata. Caudal autotomy did not alter the basking site preferences of either species. Thus, both Lampropholis species had similar behavioural responses to autotomy. Our study also indicates that the impact of tail loss on locomotor performance may be temperature-dependent and highlights that future studies should be conducted over a broad thermal range

    Lateralized Kinematics of Predation Behavior in a Lake Tanganyika Scale-Eating Cichlid Fish

    Get PDF
    Behavioral lateralization has been documented in many vertebrates. The scale-eating cichlid fish Perissodus microlepis is well known for exhibiting lateral dimorphism in its mouth morphology and lateralized behavior in robbing scales from prey fish. A previous field study indicated that this mouth asymmetry closely correlates with the side on which prey is attacked, but details of this species' predation behavior have not been previously analyzed because of the rapidity of the movements. Here, we studied scale-eating behavior in cichlids in a tank through high-speed video monitoring and quantitative assessment of behavioral laterality and kinematics. The fish observed showed a clear bias toward striking on one side, which closely correlated with their asymmetric mouth morphologies. Furthermore, the maximum angular velocity and amplitude of body flexion were significantly larger during attacks on the preferred side compared to those on the nonpreferred side, permitting increased predation success. In contrast, no such lateral difference in movement elements was observed in acoustically evoked flexion during the escape response, which is similar to flexion during scale eating and suggests that they share a common motor control pathway. Thus the neuronal circuits controlling body flexion during scale eating may be functionally lateralized upstream of this common motor pathway

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore