63 research outputs found

    Dynamic modelling of electrooptically modulated vertical compound cavity surface emitting semiconductor lasers

    Get PDF
    A generalized rate equation model is used to simulate the interrelated amplitude and frequency modulation properties of Electrooptically Modulated Vertical Compound Cavity Surface Emitting Semiconductor Lasers in both large and small signal modulation regimes. It is shown that the photon lifetime in the modulator subcavity provides the ultimate limit for the 3 dB modulation cutoff frequency. It is shown that there is an optimum design (number of periods) of both the intermediate and top multistack reflectors to maximise the large-signal modulation quality

    The Waiting Time for Inter-Country Spread of Pandemic Influenza

    Get PDF
    BACKGROUND: The time delay between the start of an influenza pandemic and its subsequent initiation in other countries is highly relevant to preparedness planning. We quantify the distribution of this random time in terms of the separate components of this delay, and assess how the delay may be extended by non-pharmaceutical interventions. METHODS AND FINDINGS: The model constructed for this time delay accounts for: (i) epidemic growth in the source region, (ii) the delay until an infected individual from the source region seeks to travel to an at-risk country, (iii) the chance that infected travelers are detected by screening at exit and entry borders, (iv) the possibility of in-flight transmission, (v) the chance that an infected arrival might not initiate an epidemic, and (vi) the delay until infection in the at-risk country gathers momentum. Efforts that reduce the disease reproduction number in the source region below two and severe travel restrictions are most effective for delaying a local epidemic, and under favourable circumstances, could add several months to the delay. On the other hand, the model predicts that border screening for symptomatic infection, wearing a protective mask during travel, promoting early presentation of cases arising among arriving passengers and moderate reduction in travel volumes increase the delay only by a matter of days or weeks. Elevated in-flight transmission reduces the delay only minimally. CONCLUSIONS: The delay until an epidemic of pandemic strain influenza is imported into an at-risk country is largely determined by the course of the epidemic in the source region and the number of travelers attempting to enter the at-risk country, and is little affected by non-pharmaceutical interventions targeting these travelers. Short of preventing international travel altogether, eradicating a nascent pandemic in the source region appears to be the only reliable method of preventing country-to-country spread of a pandemic strain of influenza

    Controlling Pandemic Flu: The Value of International Air Travel Restrictions

    Get PDF
    BACKGROUND: Planning for a possible influenza pandemic is an extremely high priority, as social and economic effects of an unmitigated pandemic would be devastating. Mathematical models can be used to explore different scenarios and provide insight into potential costs, benefits, and effectiveness of prevention and control strategies under consideration. METHODS AND FINDINGS: A stochastic, equation-based epidemic model is used to study global transmission of pandemic flu, including the effects of travel restrictions and vaccination. Economic costs of intervention are also considered. The distribution of First Passage Times (FPT) to the United States and the numbers of infected persons in metropolitan areas worldwide are studied assuming various times and locations of the initial outbreak. International air travel restrictions alone provide a small delay in FPT to the U.S. When other containment measures are applied at the source in conjunction with travel restrictions, delays could be much longer. If in addition, control measures are instituted worldwide, there is a significant reduction in cases worldwide and specifically in the U.S. However, if travel restrictions are not combined with other measures, local epidemic severity may increase, because restriction-induced delays can push local outbreaks into high epidemic season. The per annum cost to the U.S. economy of international and major domestic air passenger travel restrictions is minimal: on the order of 0.8% of Gross National Product. CONCLUSIONS: International air travel restrictions may provide a small but important delay in the spread of a pandemic, especially if other disease control measures are implemented during the afforded time. However, if other measures are not instituted, delays may worsen regional epidemics by pushing the outbreak into high epidemic season. This important interaction between policy and seasonality is only evident with a global-scale model. Since the benefit of travel restrictions can be substantial while their costs are minimal, dismissal of travel restrictions as an aid in dealing with a global pandemic seems premature

    Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Get PDF
    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.This work was funded by a Wellcome Trust Senior Investigator Award (103792), Wellcome Trust Programme Grant (092545) and BBSRC Project Grant (BB/L00786X/1) to A.H.B. A.H.B acknowledges core funding to the Gurdon Institute from the Wellcome Trust (092096) and CRUK (C6946/A14492).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nprot.2016.08

    Quarantine for pandemic influenza control at the borders of small island nations

    Get PDF
    Background: Although border quarantine is included in many influenza pandemic plans, detailed guidelines have yet to be formulated, including considerations for the optimal quarantine length. Motivated by the situation of small island nations, which will probably experience the introduction of pandemic influenza via just one airport, we examined the potential effectiveness of quarantine as a border control measure. Methods: Analysing the detailed epidemiologic characteristics of influenza, the effectiveness of quarantine at the borders of islands was modelled as the relative reduction of the risk of releasing infectious individuals into the community, explicitly accounting for the presence of asymptomatic infected individuals. The potential benefit of adding the use of rapid diagnostic testing to the quarantine process was also considered. Results: We predict that 95% and 99% effectiveness in preventing the release of infectious individuals into the community could be achieved with quarantine periods of longer than 4.7 and 8.6 days, respectively. If rapid diagnostic testing is combined with quarantine, the lengths of quarantine to achieve 95% and 99% effectiveness could be shortened to 2.6 and 5.7 days, respectively. Sensitivity analysis revealed that quarantine alone for 8.7 days or quarantine for 5.7 days combined with using rapid diagnostic testing could prevent secondary transmissions caused by the released infectious individuals for a plausible range of prevalence at the source country (up to 10%) and for a modest number of incoming travellers (up to 8000 individuals). Conclusion: Quarantine atthe borders of island nations could contribute substantially to preventing the arrival of pandemic influenza (or at least delaying the arrival date). For small island nations we recommend consideration of quarantine alone for 9 days or quarantine for 6 days combined with using rapid diagnostic testing (if available). © 2009 Nishiura et al; licensee BioMed Central Ltd.published_or_final_versio

    Does the Effectiveness of Control Measures Depend on the Influenza Pandemic Profile?

    Get PDF
    BACKGROUND: Although strategies to contain influenza pandemics are well studied, the characterization and the implications of different geographical and temporal diffusion patterns of the pandemic have been given less attention. METHODOLOGY/MAIN FINDINGS: Using a well-documented metapopulation model incorporating air travel between 52 major world cities, we identified potential influenza pandemic diffusion profiles and examined how the impact of interventions might be affected by this heterogeneity. Clustering methods applied to a set of pandemic simulations, characterized by seven parameters related to the conditions of emergence that were varied following Latin hypercube sampling, were used to identify six pandemic profiles exhibiting different characteristics notably in terms of global burden (from 415 to >160 million of cases) and duration (from 26 to 360 days). A multivariate sensitivity analysis showed that the transmission rate and proportion of susceptibles have a strong impact on the pandemic diffusion. The correlation between interventions and pandemic outcomes were analyzed for two specific profiles: a fast, massive pandemic and a slow building, long-lasting one. In both cases, the date of introduction for five control measures (masks, isolation, prophylactic or therapeutic use of antivirals, vaccination) correlated strongly with pandemic outcomes. Conversely, the coverage and efficacy of these interventions only moderately correlated with pandemic outcomes in the case of a massive pandemic. Pre-pandemic vaccination influenced pandemic outcomes in both profiles, while travel restriction was the only measure without any measurable effect in either. CONCLUSIONS: our study highlights: (i) the great heterogeneity in possible profiles of a future influenza pandemic; (ii) the value of being well prepared in every country since a pandemic may have heavy consequences wherever and whenever it starts; (iii) the need to quickly implement control measures and even to anticipate pandemic emergence through pre-pandemic vaccination; and (iv) the value of combining all available control measures except perhaps travel restrictions

    How to Minimize the Attack Rate during Multiple Influenza Outbreaks in a Heterogeneous Population

    Get PDF
    <div><h3>Background</h3><p>If repeated interventions against multiple outbreaks are not feasible, there is an optimal level of control during the first outbreak. Any control measures above that optimal level will lead to an outcome that may be as sub-optimal as that achieved by an intervention that is too weak. We studied this scenario in more detail.</p> <h3>Method</h3><p>An age-stratified ordinary-differential-equation model was constructed to study infectious disease outbreaks and control in a population made up of two groups, adults and children. The model was parameterized using influenza as an example. This model was used to simulate two consecutive outbreaks of the same infectious disease, with an intervention applied only during the first outbreak, and to study how cumulative attack rates were influenced by population composition, strength of inter-group transmission, and different ways of triggering and implementing the interventions. We assumed that recovered individuals are fully immune and the intervention does not confer immunity.</p> <h3>Results/Conclusion</h3><p>The optimal intervention depended on coupling between the two population sub-groups, the length, strength and timing of the intervention, and the population composition. Population heterogeneity affected intervention strategies only for very low cross-transmission between groups. At more realistic values, coupling between the groups led to synchronization of outbreaks and therefore intervention strategies that were optimal in reducing the attack rates for each subgroup and the population overall coincided. For a sustained intervention of low efficacy, early intervention was found to be best, while at high efficacies, a delayed start was better. For short interventions, a delayed start was always advantageous, independent of the intervention efficacy. For most scenarios, starting the intervention after a certain cumulative proportion of children were infected seemed more robust in achieving close to optimal outcomes compared to a strategy that used a specified duration after an outbreak’s beginning as the trigger.</p> </div

    Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model

    Get PDF
    ABSTRACT: BACKGROUND: Simulation models of influenza spread play an important role for pandemic preparedness. However, as the world has not faced a severe pandemic for decades, except the rather mild H1N1 one in 2009, pandemic influenza models are inherently hypothetical and validation is, thus, difficult. We aim at reconstructing a recent seasonal influenza epidemic that occurred in Switzerland and deem this to be a promising validation strategy for models of influenza spread. METHODS: We present a spatially explicit, individual-based simulation model of influenza spread. The simulation model bases upon (i) simulated human travel data, (ii) data on human contact patterns and (iii) empirical knowledge on the epidemiology of influenza. For model validation we compare the simulation outcomes with empirical knowledge regarding (i) the shape of the epidemic curve, overall infection rate and reproduction number, (ii) age-dependent infection rates and time of infection, (iii) spatial patterns. RESULTS: The simulation model is capable of reproducing the shape of the 2003/2004 H3N2 epidemic curve of Switzerland and generates an overall infection rate (14.9 percent) and reproduction numbers (between 1.2 and 1.3), which are realistic for seasonal influenza epidemics. Age and spatial patterns observed in empirical data are also reflected by the model: Highest infection rates are in children between 5 and 14 and the disease spreads along the main transport axes from west to east. CONCLUSIONS: We show that finding evidence for the validity of simulation models of influenza spread by challenging them with seasonal influenza outbreak data is possible and promising. Simulation models for pandemic spread gain more credibility if they are able to reproduce seasonal influenza outbreaks. For more robust modelling of seasonal influenza, serological data complementing sentinel information would be beneficia
    • …
    corecore