53 research outputs found

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    α1Proteinase Inhibitor Regulates CD4+ Lymphocyte Levels and Is Rate Limiting in HIV-1 Disease

    Get PDF
    Background: The regulation of adult stem cell migration through human hematopoietic tissue involves the chemokine CXCL12 (SDF-1) and its receptor CXCR4 (CD184). In addition, human leukocyte elastase (HLE) plays a key role. When HLE is located on the cell surface (HLE CS), it acts not as a proteinase, but as a receptor for a 1proteinase inhibitor (a 1PI, a 1antitrypsin, SerpinA1). Binding of a1PI to HLECS forms a motogenic complex. We previously demonstrated that a1PI deficiency attends HIV-1 disease and that a1PI augmentation produces increased numbers of immunocompetent circulating CD4 + lymphocytes. Herein we investigated the mechanism underlying the a 1PI deficiency that attends HIV-1 infection. Methods and Findings: Active a 1PI in HIV-1 subjects (median 17 mM, n = 35) was significantly below normal (median 36 mM, p,0.001, n = 30). In HIV-1 uninfected subjects, CD4 + lymphocytes were correlated with the combined factors a1PI, HLECS + lymphocytes, and CXCR4 + lymphocytes (r 2 = 0.91, p,0.001, n = 30), but not CXCL12. In contrast, in HIV-1 subjects with.220 CD4 cells/ml, CD4 + lymphocytes were correlated solely with active a 1PI (r 2 =0.93,p,0.0001, n = 26). The monoclonal anti-HIV-1 gp120 antibody 3F5 present in HIV-1 patient blood is shown to bind and inactivate human a 1PI. Chimpanzee a 1PI differs from human a1PI by a single amino acid within the 3F5-binding epitope. Unlike human a1PI, chimpanzee a1PI did not bind 3F5 or become depleted following HIV-1 challenge, consistent with the normal CD4 + lymphocyte levels and benign syndrome of HIV-1 infected chimpanzees. The presence of IgG-a 1PI immune complexes correlated with decreased CD4 + lymphocytes in HIV-1 subjects

    Maternal Age Dependence of Chromosome Anomalies

    No full text

    Association between different anti-Tat antibody isotypes and HIV disease progression: data from an African cohort

    Get PDF
    Background: The presence of IgG and IgM against Tat, an HIV protein important for viral replication and immune dysfunction, is associated with slow disease progression in clade B HIV-infected individuals. However, although Tat activities strictly depend on the viral clade, our knowledge about the importance of anti-Tat antibodies in non-clade B HIV infection is poor. The objective of this study was to investigate the association of different anti-Tat antibody isotypes with disease progression in non-clade B HIV-infected subjects and to study the relationship between anti-Tat humoral responses and immunological abnormalities. Methods: Anti-clade B and - clade C Tat IgG, IgM and IgA titers were assessed in serum samples from 96 cART-naive subjects with chronic HIV infection from Mbeya, Tanzania, and associated with CD4(+) T cell count, plasma viremia and CD4(+) and CD8(+) T cell phenotypes. Results: Anti-Tat IgM were preferentially detected in chronic HIV-infected subjects with low T cell activation (p-value = 0.03) and correlated with higher CD4(+) T cell counts and lower viral loads irrespective of the duration of infection (p-value = 0.019 and p-value = 0.037 respectively). Conversely, anti-Tat IgA were preferentially detected in individuals with low CD4(+) T cell counts and high viral load (p-value = 0.02 and p-value < 0.001 respectively). The simultaneous presence of anti-Tat IgG and IgM protected from fast CD4(+) T cell decline (p-value < 0.01) and accumulation of CD38(+) HLADR(+) CD8(+) T cells (p-value = 0.029). Conclusions: Anti-Tat IgG alone are not protective in non-clade B infected subjects, unless concomitant with IgM, suggesting a protective role of persistent anti-Tat IgM irrespective of the infecting clade
    • …
    corecore