28 research outputs found

    A novel TBP-TAF complex on RNA Polymerase II-transcribed snRNA genes

    Get PDF
    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3′ box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression

    A Genetic Strategy for Stochastic Gene Activation with Regulated Sparseness (STARS)

    Get PDF
    It remains a challenge to establish a straightforward genetic approach for controlling the probability of gene activation or knockout at a desired level. Here, we developed a method termed STARS: stochastic gene activation with genetically regulated sparseness. The stochastic expression was achieved by two cross-linked, mutually-exclusive Cre-mediated recombinations. The stochastic level was further controlled by regulating Cre/lox reaction kinetics through varying the intrachromosomal distance between the lox sites mediating one of the recombinations. In mammalian cell lines stably transfected with a single copy of different STARS transgenes, the activation/knockout of reporter genes was specifically controlled to occur in from 5% to 50% of the cell population. STARS can potentially provide a convenient way for genetic labeling as well as gene expression/knockout in a population of cells with a desired sparseness level

    A Score of the Ability of a Three-Dimensional Protein Model to Retrieve Its Own Sequence as a Quantitative Measure of Its Quality and Appropriateness

    Get PDF
    BACKGROUND: Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. PRINCIPAL FINDINGS: The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332:449-460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. CONCLUSION: Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone

    Maf1, a New Player in the Regulation of Human RNA Polymerase III Transcription

    Get PDF
    BACKGROUND: Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the α-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. CONCLUSIONS/SIGNIFICANCE: These data suggest that Maf1 is a major regulator of pol III transcription in human cells

    Structural Insights into the Evolution of a Non-Biological Protein: Importance of Surface Residues in Protein Fold Optimization

    Get PDF
    Phylogenetic profiling of amino acid substitution patterns in proteins has led many to conclude that most structural information is carried by interior core residues that are solvent inaccessible. This conclusion is based on the observation that buried residues generally tolerate only conserved sequence changes, while surface residues allow more diverse chemical substitutions. This notion is now changing as it has become apparent that both core and surface residues play important roles in protein folding and stability. Unfortunately, the ability to identify specific mutations that will lead to enhanced stability remains a challenging problem. Here we discuss two mutations that emerged from an in vitro selection experiment designed to improve the folding stability of a non-biological ATP binding protein. These mutations alter two solvent accessible residues, and dramatically enhance the expression, solubility, thermal stability, and ligand binding affinity of the protein. The significance of both mutations was investigated individually and together, and the X-ray crystal structures of the parent sequence and double mutant protein were solved to a resolution limit of 2.8 and 1.65 Å, respectively. Comparative structural analysis of the evolved protein to proteins found in nature reveals that our non-biological protein evolved certain structural features shared by many thermophilic proteins. This experimental result suggests that protein fold optimization by in vitro selection offers a viable approach to generating stable variants of many naturally occurring proteins whose structures and functions are otherwise difficult to study

    Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients

    Get PDF
    BACKGROUND: We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO(2)/FiO(2)). METHODS: Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO(2)/FiO(2 )was < 350 and decreased spirometric volume was < 1.8 L. RESULTS: Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO(2)/FiO(2), and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO(2)/FiO(2 )– 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. CONCLUSIONS: Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO(2)/FiO(2), or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
    corecore