158 research outputs found

    XMM-Newton observation of a spectral state transition in the peculiar radio/X-ray/gamma-ray source LS I +61 303

    Full text link
    We report the results of XMM-Newton and BeppoSAX observations of the radio and X-ray emitting star LS I +61 303, likely associated with the gamma-ray source 2CG 135+01 and recently detected also at TeV energies. The data include a long XMM-Newton pointing carried out in January 2005, which provides the deepest look ever obtained for this object in the 0.3-12 keV range. During this observation the source flux decreased from a high level of 13E12 erg/cm2/s to 4E12 erg/cm2/s within 2-3 hours.This flux range is the same seen in shorter and less sensitive observations carried out in the past, but the new data show for the first time that transitions between the two levels can occur on short time scales. The flux decrease was accompanied by a significant softening of the spectrum, which is well described by a power law with photon index changing from 1.62+/-0.1 to 1.83+/-0.1. A correlation between hardness and intensity is also found when comparing different short observations spanning almost 10 years and covering various orbital phases.LS I +61 303 was detected in the 15-70 keV range with the PDS instrument in one of the BeppoSAX observations, providing evidence for variability also in the hard X-ray range. The X-ray spectra, discussed in the context of multiwavelength observations, place some interesting constraints on the properties and location of the high-energy emitting region.Comment: Revised version, accepted for publication in A&A. Updated references, few typos corrected, minor changes following referee's suggestion

    Evaluating roughness scaling properties of natural active fault surfaces by means of multi-view photogrammetry

    Get PDF
    Fault roughness is a measure of the dimensions and distribution of fault asperities, which can act as stress concentrators affecting fault frictional behaviour and the dynamics of rupture propagation. Studies aimed at describing fault roughness require the acquisition of extremely detailed and accurate datasets of fault surface topography. Fault surface data have been acquired by methods such as LiDAR, laser profilometers and white light interferometers, each covering different length scales and with only LiDAR available in the field. Here we explore the potential use of multi-view photogrammetric methods in fault roughness studies, which are presently underexplored and offer the advantage of detailed data acquisition directly in the field. We applied the photogrammetric method to reproduce fault topography, by using seven dm-sized fault rock samples photographed in the lab, three fault surfaces photographed in the field, and one control object used to estimate the model error. We studied these topographies estimating their roughness scaling coefficients through a Fourier power spectrum method. Our results show scaling coefficients of 0.84 ± 0.17 along the slip direction and 0.91 ± 0.17 perpendicularly to it, and are thus comparable to those results obtained by previous authors. This provides encouragement for the use of photogrammetric methods for future studies, particularly those involving field-based acquisition, where other techniques have limitations

    Virtual Outcrops in a Pocket: The Smartphone as a Fully Equipped Photogrammetric Data Acquisition Tool

    Get PDF
    Since the advent of affordable consumer-grade cameras over a century ago, photographic images have been the standard medium for capturing and visualizing outcrop-scale geological features. Despite the ubiquity of raster image data capture in routine fieldwork, the development of close-range 3D remote-sensing techniques has led to a paradigm shift in the representation and analysis of rock exposures from two- to three-dimensional forms. The use of geological 3D surface reconstructions in routine fieldwork has, however, been limited by the portability, associated learning curve, and/or expense of tools required for data capture, visualization, and analysis. Smartphones are rapidly becoming a viable alternative to conventional 3D close-range remote-sensing data capture and visualization platforms, providing a catalyst for the general uptake of 3D outcrop technologies by the geological community, which were up until relatively recently the purview of a relatively small number of geospatial specialists. Indeed, the continuous improvement of smartphone cameras, coupled with their integration with global navigation satellite system (GNSS) and inertial sensors provides 3D reconstructions with comparable accuracy to survey-grade systems. These developments have already led many field geologists to replace reflex cameras, as well as dedicated handheld GNSS receivers and compass clinometers, with smartphones, which offer the equivalent functionality within a single compact platform. Here we demonstrate that through the use of a smartphone and a portable gimbal stabilizer, we can readily generate and register high-quality 3D scans of outcropping geological structures, with the workflow exemplified using a mirror of a seismically active fault. The scan is conducted with minimal effort over the course of a few minutes with limited equipment, thus being representative of a routine situation for a field geologist

    Analysis of Thunderstorms Producing Terrestrial Gamma Ray Flashes With the Meteosat Second Generation

    Get PDF
    Up to now, only few works focused on the meteorological context leading to the production of Terrestrial Gamma ray Flashes (TGFs). In this study, we carry out, for the first time, an analysis on large scale of the meteorological scenario linked to 278 TGFs detected by RHESSI, AGILE, and Fermi, by using the Meteosat Second Generation geostationary satellites. These satellites are useful as they continuously monitor the same geographic region in time, allowing investigations on thunderstorms' development; moreover, they are endowed with channels and products that provide information about the meteorological context under analysis, such as the cloud top temperature and altitude, the cloud extension, the drop effective radius and the cloud phase. Our work confirms what previously found in other studies about the TGF‐associated thunderstorms, by using a different approach and by using for the first time the Meteosat satellites: we find TGFs mostly linked to the development phase of deep convective thunderstorm systems, exhibiting typical characteristics of tropical storms, and providing a first picture on large scale of the TGF‐associated thunderstorm systems.publishedVersio

    Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV-Vis multivariate statistical analysis

    Get PDF
    In this work, we obtain detailed mechanistic and structural information on bimolecular chemical reactions occurring in solution on the second to millisecond time scales through the combination of a statistical, multivariate and theoretical analysis of time-resolved coupled X-ray Absorption Spectroscopy (XAS) and UV-Vis data. We apply this innovative method to investigate the sulfoxidation of p-cyanothioanisole and p-methoxythioanisole by the nonheme FeIV oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in acetonitrile at room temperature. By employing statistical and multivariate techniques we determine the number of key chemical species involved along the reaction paths and derive spectral and concentration profiles for the reaction intermediates. From the quantitative analysis of the XAS spectra we obtain accurate structural information for all reaction intermediates and provide the first structural characterization in solution of complex [N4Py·FeIII(OH)]2+. The employed strategy is promising for the spectroscopic characterization of transient species formed in redox reactions. © The Royal Society of Chemistry

    Activation of C-H bonds by a nonheme iron(iv)-oxo complex: mechanistic evidence through a coupled EDXAS/UV-Vis multivariate analysis

    Get PDF
    The understanding of reactive processes involving organic substrates is crucial to chemical knowledge and requires multidisciplinary efforts for its advancement. Herein, we apply a combined multivariate, statistical and theoretical analysis of coupled time-resolved X-ray absorption (XAS)/UV-Vis data to obtain detailed mechanistic information for on the C-H bond activation of 9,10-dihydroanthracene (DHA) and diphenylmethane (Ph2CH2) by the nonheme FeIV-oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in CH3CN at room temperature. Within this approach, we determine the number of key chemical species present in the reaction mixtures and derive spectral and concentration profiles for the reaction intermediates. From the quantitative analysis of the XAS spectra the transient intermediate species are structurally determined. As a result, it is suggested that, while DHA is oxidized by [N4Py·FeIV(O)]2+ with a hydrogen atom transfer-electron transfer (HAT-ET) mechanism, Ph2CH2 is oxidized by the nonheme iron-oxo complex through a HAT-radical dissociation pathway. In the latter process, we prove that the intermediate FeIII complex [N4Py·FeIII(OH)]2+ is not able to oxidize the diphenylmethyl radical and we provide its structural characterization in solution. The employed combined experimental and theoretical strategy is promising for the spectroscopic characterization of transient intermediates as well as for the mechanistic investigation of redox chemical transformations on the second to millisecond time scales. This journal i

    Deformation pattern around the conejera fault blocks (asturian basin, north iberian margin)

    Get PDF
    The Asturian Basin is located on the coastline of the North Iberian Margin. This basin is dissected by long-lived E-, NE- and NW-striking faults that delineate a series of extensional fault blocks that became shortened during the Upper Cretaceous to Cenozoic Alpine convergence. In the Conejera cove, the NE-striking and SE-dipping Conejera Fault displays a remarkable example of contractional deformation, promoted by the mechanical contrast within the Lower to Middle Jurassic stratigraphic series. Field observations and structural analysis carried out in this study reveal: i) a first system of orthogonal cross-joints oblique to the Conejera Fault and other major onshore boundary faults, ii) a second system of meso-extensional faults parallel to the Conejera Fault, and developed by the reactivation and linkage of the orthogonal cross-joints and iii) a series of contractional folds, thrusts and pressure solution with a predominant NE to ENE trend. Observed relationships and structural analysis suggest an obliquity between the here inferred direction of the Late Jurassic-Early Cretaceous stretching (i.e. about N015E) and the onshore boundary faults, whereas the contractional structures are broadly parallel to the NE-striking Conejera Fault and suggest a roughly SSE- to SE-oriented Alpine convergence

    Photogrammetric 3D model via smartphone GNSS sensor. Workflow, error estimate, and best practices

    Get PDF
    Geotagged smartphone photos can be employed to build digital terrain models using structure from motion-multiview stereo (SfM-MVS) photogrammetry. Accelerometer, magnetometer, and gyroscope sensors integrated within consumer-grade smartphones can be used to record the orientation of images, which can be combined with location information provided by inbuilt global navigation satellite system (GNSS) sensors to geo-register the SfM-MVS model. The accuracy of these sensors is, however, highly variable. In this work, we use a 200 m-wide natural rocky cliff as a test case to evaluate the impact of consumer-grade smartphone GNSS sensor accuracy on the registration of SfM-MVS models. We built a high-resolution 3D model of the cliff, using an unmanned aerial vehicle (UAV) for image acquisition and ground control points (GCPs) located using a differential GNSS survey for georeferencing. This 3D model provides the benchmark against which terrestrial SfM-MVS photogrammetry models, built using smartphone images and registered using built-in accelerometer/gyroscope and GNSS sensors, are compared. Results show that satisfactory post-processing registrations of the smartphone models can be attained, requiring: (1) wide acquisition areas (scaling with GNSS error) and (2) the progressive removal of misaligned images, via an iterative process of model building and error estimation
    • 

    corecore