276 research outputs found
Self-Optimization of Internet Services with Dynamic Resource Provisioning
Self-optimization through dynamic resource provisioning is an appealing approach to tackle load variation in Internet services. It allows to assign or release resources to/from Internet services according to the varying load. However, dynamic resource provisioning raises several challenges among which: (i) How to plan a good capacity of an Internet service, i.e.~a necessary and sufficient amount of resource to handle the Internet service workload, (ii) How to manage both gradual load variation and load peaks in Internet services, (iii) How to prevent system oscillations in presence of potentially concurrent dynamic resource provisioning, and (iv) How to provide generic self-optimization that applies to different Internet services such as e-mail services, streaming servers or e-commerce web systems. This paper precisely answers these questions. It presents the design principles and implementation details of a self-optimization autonomic manager. It describes the results of an experimental evaluation of the self-optimization manager with a realistic e-commerce multi-tier web application running in a Linux cluster of computers. The experimental results show the usefulness of self-optimization in terms of end-user's perceived performance and system's operational costs, with a negligible overhead
Phosphines, carbènes N-hétérocycliques (NHCs) et nouveaux précurseurs de NHCs pour la catalyse organique de réactions (macro)moléculaires
Dans ce travail de thèse, plusieurs approches ont été développées pour permettre une utilisation plus variée des carbènes N-hétérocycliques (NHCs) et des phosphines en tant que catalyseurs/activateurs organiques.Les précurseurs de NHCs étudiés dans un premier temps, c'est-à-dire les hydrogénocarbonates d azolium, peuvent être synthétisés en une seule étape, à l inverse des NHCs dont la synthèse et l isolation sont souvent compliquées. Nous avons démontré que ces espèces sont stables à l air et sont à l équilibre en solution avec leurs homologues carboxylates d azolium (adduits NHC-CO2). Leur utilisation permet donc de faciliter la manipulation des NHCs tout en conservant une activité catalytique satisfaisante tant en synthèse moléculaire qu en chimie des polymères.Des paires de Lewis silane ou borane/NHC ont ensuite été employées afin d augmenter le potentiel des NHCs pour des réactions modèles de chimie (macro)moléculaire par un effet de double assistance (acide/base de Lewis).Enfin, une phosphine commerciale a été utilisée pour catalyser la polymérisation par transfert de groupe des (méth)acrylates d alkyle de façon vivante/contrôlée .In this thesis work, some points are adressed in order to broaden the scope of the application of N-heterocyclic carbenes (NHCs) as organic catalysts/activators.The novel NHC precursors studied first, i.e. azolium hydrogen carbonates, are synthesized in a one-step undemanding process, in contrast to NHCs whose synthesis and isolation is often a tedious procedure. We then showed that these species are air-stable and are at the equilibrium, in solution, with their azolium-2-carboxylates homologues (NHC-CO2 adducts). The use of such precatalysts thus allows facilitating the manipulation of NHCs, while maintaining an efficient catalytic activity in molecular chemistry as well as in polymer synthesis.We then proposed to use NHCs in conjunction with organic Lewis acids (silanes or boranes) as a possible means to induce a cooperative dual activation mechanism (Lewis acid/base) in order to increase the potential of NHCs for model (macro)molecular reactions.Finally, a commercial phosphine was used to trigger the group transfer polymerization of alkyl (meth)acrylates in a controlled/living fashion.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
Lanthanide-Based Single-Chain Nanoparticles as “Visual” Pass/Fail Sensors of Maximum Permissible Concentration of Cu2+ Ions in Drinking Water
The maximum permissible concentration (m.p.c.) of Cu2+ ions in drinking water, as set by the World Health Organization (WHO) is m.p.c. (Cu2+)WHO = 30 × 10−6 m, whereas the US Environmental Protection Agency (EPA) establishes a more restrictive value of m.p.c. (Cu2+)EPA = 20 × 10−6 m. Herein, for the first time ever, a family of m.p.c. (Cu2+) “visual” pass/fail sensors is developed based on water-soluble lanthanide-containing single-chain nanoparticles (SCNPs) exhibiting an average hydrodynamic diameter less than 10 nm. Both europium (Eu)- and terbium (Tb)-based SCNPs allow excessive Cu2+ to be readily detected in water, as indicated by the red-to-transparent and green-to-transparent changes, respectively, under UV light irradiation, occurring at 30 × 10−6 m Cu2+ in both cases. Complementary, dysprosium (Dy)-based SCNPs show a yellow color-to-transparent transition under UV light irradiation at ≈15 × 10−6 m Cu2+. Eu-, Tb-, and Dy-containing SCNPs prove to be selective for Cu2+ ions as they do not respond against other metal ions, such as Fe2+, Ag+, Co2+, Ba2+, Ni2+, Hg2+, Pb2+, Zn2+, Fe3+, Ca2+, Mn2+, Mg2+, or Cr3+. These new m.p.c. (Cu2+) “visual” pass/fail sensors are thoroughly characterized by a combination of techniques, including size exclusion chromatography, dynamic light scattering, inductively coupled plasma-mass spectrometry, as well as infrared, UV, and fluorescence spectroscopy.Ministerio de Ciencia e Innovación. Grant Numbers: TED2021-130107A-I00, PID2021-123438NB-I0
Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers
Herein, we present a straightforward and versatile methodology to achieve functional polymeric nano-objects that contain helical cores. Nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers was..
Isoselective Ring-Opening Polymerization of rac-Lactide From Chiral Takemoto’s Organocatalysts:Elucidation of Stereocontrol
Despite significant advances in organocatalysis, stereoselective polymerization reactions utilizing chiral organocatalysts have received very little attention, and much about the underlying mechanisms remains unknown. Here, we report that both commercially available (R,R)- and (S,S)-enantiomers of chiral thiourea-amine Takemoto’s organocatalysts promote efficient control and high isoselectivity at room temperature of
the ring-opening polymerization (ROP) of racemic lactide by kinetic resolution, yielding highly isotactic, semicrystalline and metal-free polylactide (PLA). Kinetic investigations and combined analyses of the resulting PLAs have allowed the stereocontrol mechanism, which eventually involves both enantiomorphic site control and chain-end control, to be determined. Moreover, epimerization of rac-LA to meso-LA is identified as being responsible for the introduction of some stereoerrors during the ROP process
Stereoselective ROP of rac- and meso-lactides using achiral TBD as catalyst
1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) polymerizes rac-lactide (rac-LA) to form highly isotactic polylactide (PLA) with a Pm = 0.88, while meso-LA yields heterotactic PLA (Pm ~ 0.8) at −75 °C. The stereocontrol of the cryogenic-based ring-opening polymerization comes from a perfect imbrication of both chiral LA and the propagating chiral end-group interacting with the achiral TBD catalyst
Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene.
peer reviewedStereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties
Ester-Containing Imidazolium-Type Ionic Liquid Crystals Derived from Bio-based Fatty Alcohols
The need to take into account the life cycle of ionic liquids (ILs), from the sourcing of the raw materials involved in their synthesis to their disposal and degradation, has become paramount in the design of new IL-type molecular structures. In the case of 1-alkyl-3-methylimidazolium salts, one of the prominent IL families, there is an increasing demand for synthetic methods involving (i) substitution of the petro-based alkyl derivatives by readily available bio-sourced surrogates and (ii) functionalization of the alkyl tail with heterofunctional groups enabling the (bio)degradation of ILs after use. Herein, a straightforward and industrially viable synthesis of lipidic imidazolium salts is reported, starting from different bio-sourced fatty alcohols, including oleic, stearyl, and lauryl alcohols. This procedure is based on the acrylation of fatty alcohols, followed by the aza-Michael addition of the imidazole group onto the acrylate moiety. Subsequent quaternization, using either methyl iodide or methyl tosylate, provides a library of 1-alkylpropionate-3-methylimidazolium salts with various alkyl chain lengths (C18, C12, and C11) and incorporating different types of counteranions (iodide, tosylate, and tetrafluoroborate). These ester-containing analogues of classical 1-alkyl-3-methylimidazolium salts are all ILs, that is, with a melting point below 100 °C. In addition, most of them exhibit a liquid-crystal behavior and can be referred to as IL crystals (ILCs). The thermal stability, as well as the phase transitions of these ILs, has been investigated by thermogravimetric analysis, as well as differential scanning calorimetry, respectively, while the molecular structure into the crystalline phase and the mesophase is studied by X-ray scattering. Interestingly, ILCs featuring unsaturated alkyl tails exhibit a low melting point, close to room temperature, and the presence of the ester function is shown to provide an enhanced stabilization of the mesophase
Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock.
METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact.
RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring.
CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock
- …