150 research outputs found
Pharmacophore model for antiepileptic drugs acting on sodium channels
Fifteen antiepileptic drugs (AED), active against the maximal electroshock seizure test and able to block the neuronal voltage-dependent sodium channel, have been studied by means of a similarity analysis. Structural and electronic, quantum chemically derived characteristics are compared. Rigid analogs are included, because of the flexibility of some structures, in order to discern the conformational requirements associated with these ligands in the moment of the interaction. An inactive compound (ethosuximide) helps in the definition of the structural factors that are important for the activity. We propose a pharmacophore model that, giving an interpretation of the biological activity, allows the design of new AED with a well-defined mechanism of interaction.Facultad de Ciencias ExactasCentro de Química Inorgánic
Benzimidazole-based derivatives as privileged scaffold developed for the treatment of the RSV infection: a computational study exploring the potency and cytotoxicity profiles
Respiratory syncytial virus (RSV) has been identified as a main cause of hospitalisation in infants and children. To date, the current therapeutic arsenal is limited to ribavirin and palivizumab with variable efficacy. In this work, starting from a number of in-house series of previously described anti-RSV agents based on the benzimidazole scaffold, with the aim at gaining a better understanding of the related chemical features involved in potency and safety profiles, we applied a computational study including two focussed comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The results allowed us to derive useful suggestions for the design of derivatives and also to set up statistical models predicting the potency and selectivity index (SI1/4CC50/EC50) of any new analogue prior to synthesis. Accordingly, here, we discuss preliminary results obtained through the applied exhaustive QSAR analyses, leading to design and synthesise more effective anti-RSV agents
Il modello Veneto, aperto, partecipato e condiviso per la promozione della società dell'informazione
In questo documento è presentato il modello di riferimento con il quale, la regione del Veneto interviene per realizzare iniziative di sviluppo tecnologico come leva per promuovere la competitività dei territori.2008-04-17Sardegna Ricerche, Edificio 2, Località Piscinamanna 09010 Pula (CA) - ItaliaPAAL 2008 - Pubblica Amministrazione Aperta e Libera: dalle tecnologie aperte alla libera circolazione dei contenuti digital
Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy)
Hypogean or enclosed monuments are important cultural heritage sites that can suffer biodegradation. Many of the stone walls of the prestigious Domus Aurea are overwhelmed by dense biofilms and so need intervention. Room 93 was chosen as a study site with the aim to test the efficacy of phyto-derivatives as new biocides. Laboratory studies were performed comparing the effects of liquorice leaf extract (Glycyrrhiza glabra L.), lavender essential oil (Lavandula angustifolia Mill.) and a combination of both. In situ studies were also performed to test the effect of liquorice. The results were compared with those of the commonly used synthetic biocide benzalkonium chloride. The effects on the biofilms were assessed by microscopy along with chlorophyll fluorescence analysis. The phototrophs in the biofilms were identified morphologically, while the heterotrophs were identified with culture analysis and 16S gene sequencing. Results showed that the mixed solution liquorice/lavender was the most effective in inhibiting the photosynthetic activities of biofilms in the laboratory tests; while, in situ, the effect of liquorice was particularly encouraging as an efficient and low-invasive biocide. The results demonstrate a high potential biocidal efficacy of the phyto-derivatives, but also highlight the need to develop an efficient application regime
Further Quinolizidine Derivatives as Antiarrhythmic Agents- 3
Fourteen quinolizidine derivatives, structurally related to the alkaloids lupinine and
cytisine and previously studied for other pharmacological purposes, were presently tested for antiarrhythmic, and other cardiovascular effects on isolated guinea pig heart tissues in comparison to
well-established reference drugs. According to their structures, the tested compounds are assembled into three subsets: (a) N-(quinolizidinyl-alkyl)-benzamides; (b) 2-(benzotriazol-2-yl)methyl-1-
(quinolizidinyl)alkyl-benzimidazoles; (c) N-substituted cytisines. All compounds but two displayed
antiarrhythmic activity that was potent for compounds 4, 1, 6, and 5 (in ascending order). The
last compound (N-(3,4,5-trimethoxybenzoyl)aminohomolupinane) was outstanding, exhibiting a
nanomolar potency (EC50 = 0.017 µM) for the increase in the threshold of ac-arrhythmia. The tested
compounds shared strong negative inotropic activity; however, this does not compromise the value of
their antiarrhythmic action. On the other hand, only moderate or modest negative chronotropic and
vasorelaxant activities were commonly observed. Compound 5, which has high antiarrhythmic potency, a favorable cardiovascular profile, and is devoid of antihypertensive activity in spontaneously
hypertensive rats, represents a lead worthy of further investigation
Pharmacophore model for antiepileptic drugs acting on sodium channels
Fifteen antiepileptic drugs (AED), active against the maximal electroshock seizure test and able to block the neuronal voltage-dependent sodium channel, have been studied by means of a similarity analysis. Structural and electronic, quantum chemically derived characteristics are compared. Rigid analogs are included, because of the flexibility of some structures, in order to discern the conformational requirements associated with these ligands in the moment of the interaction. An inactive compound (ethosuximide) helps in the definition of the structural factors that are important for the activity. We propose a pharmacophore model that, giving an interpretation of the biological activity, allows the design of new AED with a well-defined mechanism of interaction.Facultad de Ciencias ExactasCentro de Química Inorgánic
Vascular Response to Spreading Depolarization Predicts Stroke Outcome
Background:
Cortical spreading depolarization (CSD) is a massive neuro-glial depolarization wave, which propagates across the cerebral cortex. In stroke, CSD is a necessary and ubiquitous mechanism for the development of neuronal lesions that initiates in the ischemic core and propagates through the penumbra extending the tissue injury. Although CSD propagation induces dramatic changes in cerebral blood flow, the vascular responses in different ischemic regions and their consequences on reperfusion and recovery remain to be defined.
Methods:
Ischemia was performed using the thrombin model of stroke and reperfusion was induced by r-tPA (recombinant tissue-type plasminogen activator) administration in mice. We used in vivo electrophysiology and laser speckle contrast imaging simultaneously to assess both electrophysiological and hemodynamic characteristics of CSD after ischemia onset. Neurological deficits were assessed on day 1, 3, and 7. Furthermore, infarct sizes were quantified using 2,3,5-triphenyltetrazolium chloride on day 7.
Results:
After ischemia, CSDs were evidenced by the characteristic propagating DC shift extending far beyond the ischemic area. On the vascular level, we observed 2 types of responses: some mice showed spreading hyperemia confined to the penumbra area (penumbral spreading hyperemia) while other showed spreading hyperemia propagating in the full hemisphere (full hemisphere spreading hyperemia). Penumbral spreading hyperemia was associated with severe stroke-induced damage, while full hemisphere spreading hyperemia indicated beneficial infarct outcome and potential viability of the infarct core. In all animals, thrombolysis with r-tPA modified the shape of the vascular response to CSD and reduced lesion volume.
Conclusions:
Our results show that different types of spreading hyperemia occur spontaneously after the onset of ischemia. Depending on their shape and distribution, they predict severity of injury and outcome. Furthermore, our data show that modulating the hemodynamic response to CSD may be a promising therapeutic strategy to attenuate stroke outcome
Journey on VX-809-Based Hybrid Derivatives towards Drug-like F508del-CFTR Correctors: From Molecular Modeling to Chemical Synthesis and Biological Assays
open12Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride's mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure-activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.openParodi, Alice; Righetti, Giada; Pesce, Emanuela; Salis, Annalisa; Tomati, Valeria; Pastorino, Cristina; Tasso, Bruno; Benvenuti, Mirko; Damonte, Gianluca; Pedemonte, Nicoletta; Cichero, Elena; Millo, EnricoParodi, Alice; Righetti, Giada; Pesce, Emanuela; Salis, Annalisa; Tomati, Valeria; Pastorino, Cristina; Tasso, Bruno; Benvenuti, Mirko; Damonte, Gianluca; Pedemonte, Nicoletta; Cichero, Elena; Millo, Enric
Leptomeningeal collaterals regulate reperfusion in ischemic stroke and rescue the brain from futile recanalization.
Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke
- …